Results 1 
1 of
1
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
 PROCEEDINGS OF THE TWENTYFIRST ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1989
"... In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntact ..."
Abstract

Cited by 311 (16 self)
 Add to MetaCart
In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of wellknown publickey cryptosystems to the learning problems. We prove that a polynomialtime learning algorithm for Boolean formulae, deterministic finite automata or constantdepth threshold circuits would have dramatic consequences for cryptography and number theory: in particular, such an algorithm could be used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to 3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is only required to obtain a slight advantage in prediction over random guessing. The techniques used demonstrate an interesting duality between learning and cryptography. We also apply our results to obtain strong intractability results for approximating a generalization of graph coloring.