Results 11  20
of
315
Nearlylinear time algorithms for graph partitioning, graph sparsification, and solving linear systems (Extended Abstract)
 STOC'04
, 2004
"... We present algorithms for solving symmetric, diagonallydominant linear systems to accuracy ɛ in time linear in their number of nonzeros and log(κf (A)/ɛ), where κf (A) isthe condition number of the matrix defining the linear system. Our algorithm applies the preconditioned Chebyshev iteration with ..."
Abstract

Cited by 223 (11 self)
 Add to MetaCart
We present algorithms for solving symmetric, diagonallydominant linear systems to accuracy ɛ in time linear in their number of nonzeros and log(κf (A)/ɛ), where κf (A) isthe condition number of the matrix defining the linear system. Our algorithm applies the preconditioned Chebyshev iteration with preconditioners designed using nearlylinear time algorithms for graph sparsification and graph partitioning.
Improved bounds for mixing rates of Markov chains and multicommodity flow
 Combinatorics, Probability and Computing
, 1992
"... The paper is concerned with tools for the quantitative analysis of finite Markov chains whose states are combinatorial structures. Chains of this kind have algorithmic applications in many areas, including random sampling, approximate counting, statistical physics and combinatorial optimisation. The ..."
Abstract

Cited by 211 (8 self)
 Add to MetaCart
(Show Context)
The paper is concerned with tools for the quantitative analysis of finite Markov chains whose states are combinatorial structures. Chains of this kind have algorithmic applications in many areas, including random sampling, approximate counting, statistical physics and combinatorial optimisation. The efficiency of the resulting algorithms depends crucially on the mixing rate of the chain, i.e., the time taken for it to reach its stationary or equilibrium distribution. The paper presents a new upper bound on the mixing rate, based on the solution to a multicommodity flow problem in the Markov chain viewed as a graph. The bound gives sharper estimates for the mixing rate of several important complex Markov chains. As a result, improved bounds are obtained for the runtimes of randomised approximation algorithms for various problems, including computing the permanent of a 01 matrix, counting matchings in graphs, and computing the partition function of a ferromagnetic Ising system. Moreove...
Spectral Partitioning Works: Planar graphs and finite element meshes
 In IEEE Symposium on Foundations of Computer Science
, 1996
"... Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extr ..."
Abstract

Cited by 199 (10 self)
 Add to MetaCart
(Show Context)
Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on boundeddegree planar graphs and finite element meshes the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O( p n) for boundeddegree planar graphs and twodimensional meshes and O i n 1=d j for wellshaped ddimensional meshes. The heart of our analysis is an upper bound on the secondsmallest eigenvalues of the Laplacian matrices of these graphs. 1. Introduction Spectral partitioning has become one of the mos...
Optimal Scaling for Various MetropolisHastings Algorithms
, 2001
"... We review and extend results related to optimal scaling of MetropolisHastings algorithms. We present various theoretical results for the highdimensional limit. We also present simulation studies which confirm the theoretical results in finite dimensional contexts. ..."
Abstract

Cited by 174 (28 self)
 Add to MetaCart
We review and extend results related to optimal scaling of MetropolisHastings algorithms. We present various theoretical results for the highdimensional limit. We also present simulation studies which confirm the theoretical results in finite dimensional contexts.
A proof of Alon’s second eigenvalue conjecture
, 2003
"... A dregular graph has largest or first (adjacency matrix) eigenvalue λ1 = d. Consider for an even d ≥ 4, a random dregular graph model formed from d/2 uniform, independent permutations on {1,...,n}. We shall show that for any ɛ>0 we have all eigenvalues aside from λ1 = d are bounded by 2 √ d − 1 ..."
Abstract

Cited by 168 (1 self)
 Add to MetaCart
A dregular graph has largest or first (adjacency matrix) eigenvalue λ1 = d. Consider for an even d ≥ 4, a random dregular graph model formed from d/2 uniform, independent permutations on {1,...,n}. We shall show that for any ɛ>0 we have all eigenvalues aside from λ1 = d are bounded by 2 √ d − 1 +ɛwith probability 1 − O(n−τ), where τ = ⌈ � √ d − 1+1 � /2⌉−1. We also show that this probability is at most 1 − c/nτ ′, for a constant c and a τ ′ that is either τ or τ +1 (“more often ” τ than τ + 1). We prove related theorems for other models of random graphs, including models with d odd. These theorems resolve the conjecture of Alon, that says that for any ɛ>0andd, the second largest eigenvalue of “most ” random dregular graphs are at most 2 √ d − 1+ɛ (Alon did not specify precisely what “most ” should mean or what model of random graph one should take). 1
Some Applications of Laplace Eigenvalues of Graphs
 GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, VOLUME 497 OF NATO ASI SERIES C
, 1997
"... In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of ..."
Abstract

Cited by 129 (0 self)
 Add to MetaCart
In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of graphs, the maxcut problem and its relation to semidefinite programming, rapid mixing of Markov chains, and to extensions of the results to infinite graphs.
Efficient routing in alloptical networks
 in Proc. 26 th ACM Symp. Theory of Computing
, 1994
"... Communication in alloptical networks requires novel routing paradigms. The high bandwidth of the optic fiber is utilized through wavelengthdivision multiplexing: a single physical optical link can carry several logical signals, provided that they are transmitted on different wavelengths. We study t ..."
Abstract

Cited by 123 (0 self)
 Add to MetaCart
(Show Context)
Communication in alloptical networks requires novel routing paradigms. The high bandwidth of the optic fiber is utilized through wavelengthdivision multiplexing: a single physical optical link can carry several logical signals, provided that they are transmitted on different wavelengths. We study the problem of routing a set of requests (each of which is a pair of nodes to be connected by a path) on sparse networks using a limited number of wavelengths, ensuring that different paths using the same wavelength never use the same physical link. The constraints on the selection of paths and wavelengths depend on the type of photonic switches used in the network. We present eflicient routing techniques for the two types of photonic switches that dominate current research in alloptical networks. Our results es
Semidefinite Programming and Combinatorial Optimization
 DOC. MATH. J. DMV
, 1998
"... We describe a few applications of semide nite programming in combinatorial optimization. ..."
Abstract

Cited by 109 (1 self)
 Add to MetaCart
We describe a few applications of semide nite programming in combinatorial optimization.
A chernoff bound for random walks on expander graphs
 In IEEE Symposium on Foundations of Computer Science
, 1993
"... ..."
(Show Context)