Results 1  10
of
43
Subtyping recursive types
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1993
"... We investigate the interactions of subtyping and recursive types, in a simply typed λcalculus. The two fundamental questions here are whether two (recursive) types are in the subtype relation, and whether a term has a type. To address the first question, we relate various definitions of type equiva ..."
Abstract

Cited by 324 (8 self)
 Add to MetaCart
We investigate the interactions of subtyping and recursive types, in a simply typed λcalculus. The two fundamental questions here are whether two (recursive) types are in the subtype relation, and whether a term has a type. To address the first question, we relate various definitions of type equivalence and subtyping that are induced by a model, an ordering on infinite trees, an algorithm, and a set of type rules. We show soundness and completeness between the rules, the algorithm, and the tree semantics. We also prove soundness and a restricted form of completeness for the model. To address the second question, we show that to every pair of types in the subtype relation we can associate a term whose denotation is the uniquely determined coercion map between the two types. Moreover, we derive an algorithm that, when given a term with implicit coercions, can infer its least
ContextSensitive Rewriting Strategies
, 1997
"... Contextsensitive rewriting is a simple restriction of rewriting which is formalized by imposing fixed restrictions on replacements. Such a restriction is given on a purely syntactic basis: it is (explicitly or automatically) specified on the arguments of symbols of the signature and inductively ..."
Abstract

Cited by 45 (32 self)
 Add to MetaCart
(Show Context)
Contextsensitive rewriting is a simple restriction of rewriting which is formalized by imposing fixed restrictions on replacements. Such a restriction is given on a purely syntactic basis: it is (explicitly or automatically) specified on the arguments of symbols of the signature and inductively extended to arbitrary positions of terms built from those symbols. Termination is not only preserved but usually improved and several methods have been developed to formally prove it. In this paper, we investigate the definition, properties, and use of contextsensitive rewriting strategies, i.e., particular, fixed sequences of contextsensitive rewriting steps. We study how to define them in order to obtain efficient computations and to ensure that contextsensitive computations terminate whenever possible. We give conditions enabling the use of these strategies for rootnormalization, normalization, and infinitary normalization. We show that this theory is suitable for formalizing ...
Rational Term Rewriting
, 1998
"... . Rational terms (possibly infinite terms with finitely many subterms) can be represented in a finite way via terms, that is, terms over a signature extended with selfinstantiation operators. For example, f ! = f(f(f(: : :))) can be represented as x :f(x) (or also as x :f(f(x)), f(x :f(x)), ..."
Abstract

Cited by 33 (15 self)
 Add to MetaCart
. Rational terms (possibly infinite terms with finitely many subterms) can be represented in a finite way via terms, that is, terms over a signature extended with selfinstantiation operators. For example, f ! = f(f(f(: : :))) can be represented as x :f(x) (or also as x :f(f(x)), f(x :f(x)), . . . ). Now, if we reduce a term t to s via a rewriting rule using standard notions of the theory of Term Rewriting Systems, how are the rational terms corresponding to t and to s related? We answer to this question in a satisfactory way, resorting to the definition of infinite parallel rewriting proposed in [7]. We also provide a simple, algebraic description of term rewriting through a variation of Meseguer's Rewriting Logic formalism. 1 Introduction Rational terms are possibly infinite terms with a finite set of subterms. They show up in a natural way in Theoretical Computer Science whenever some finite cyclic structures are of concern (for example data flow diagrams, cyclic te...
EQUIVALENCES AND TRANSFORMATIONS OF REGULAR SYSTEMS  APPLICATIONS TO RECURSIVE PROGRAM SCHEMES AND GRAMMARS
, 1986
"... This work presents a unified theory of recursive program schemes, contextfree grammars, grammars on arbitrary algebraic structures and, in fact, recursive definitions of all kind by means of regular systems. The equivalences of regular systems associated with either all their solutions or their le ..."
Abstract

Cited by 30 (5 self)
 Add to MetaCart
This work presents a unified theory of recursive program schemes, contextfree grammars, grammars on arbitrary algebraic structures and, in fact, recursive definitions of all kind by means of regular systems. The equivalences of regular systems associated with either all their solutions or their least solutions (in all domains of appropriate type satisfying a set of algebraic laws expressed by equations) are systematically investigated and characterized (in some cases) in terms of system transformations by folding, unfolding and rewriting according to the equational algebraic laws. Grammars are better characterized in terms of polynomial systems which are regular systems involving the operation of set union, and the same questions are raised for them. We also examine conditions insuring the uniqueness of the solution of a regular or of a polynomial system. This theory applies to grammars of many kinds which generate trees, graphs, etc. We formulate some classical transformations of contextfree grammars in terms of correct transformations which only use folding, unfolding and algebraic laws and we immediately obtain their correctness.
µCalculus AlternationDepth Hierarchy Is Strict On Binary Trees
, 1999
"... 8>  and \Sigma n hard formulas are formulas on nary trees. They are defined inductively by L 0 (P ) = L d 0 (P ) = P; L n+1 (P ) = x n+1 :(P L d n (a n+1 :x n+1 )); L d n+1 (P ) = ¯x n+1 :(P L n (a n+1 :x n+1 )); where a node has property a i :x if its ith successor has property x. Si ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
8>  and \Sigma n hard formulas are formulas on nary trees. They are defined inductively by L 0 (P ) = L d 0 (P ) = P; L n+1 (P ) = x n+1 :(P L d n (a n+1 :x n+1 )); L d n+1 (P ) = ¯x n+1 :(P L n (a n+1 :x n+1 )); where a node has property a i :x if its ith successor has property x. Since Lenzi's formulas are formulas on nary trees, and since one can encode nary trees into binary trees, one can deduce from Lenzi
Solving Recursive Domain Equations with Enriched Categories
, 1994
"... Both preorders and metric spaces have been used at various times as a foundation for the solution of recursive domain equations in the area of denotational semantics. In both cases the central theorem states that a `converging' sequence of `complete' domains/spaces with `continuous' ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
Both preorders and metric spaces have been used at various times as a foundation for the solution of recursive domain equations in the area of denotational semantics. In both cases the central theorem states that a `converging' sequence of `complete' domains/spaces with `continuous' retraction pairs between them has a limit in the category of complete domains/spaces with retraction pairs as morphisms. The preorder version was discovered first by Scott in 1969, and is referred to as Scott's inverse limit theorem. The metric version was mainly developed by de Bakker and Zucker and refined and generalized by America and Rutten. The theorem in both its versions provides the main tool for solving recursive domain equations. The proofs of the two versions of the theorem look astonishingly similar, but until now the preconditions for the preorder and the metric versions have seemed to be fundamentally different. In this thesis we establish a more general theory of domains based on the noti...
(Cyclic) Term Graph Rewriting is adequate for Rational Parallel Term Rewriting
 CGH
, 1997
"... Acyclic Term Graphs are able to represent terms with sharing, and the relationship between Term Graph Rewriting (TGR) and Term Rewrtiting (TR) is now well understood [BvEG + 87, HP91]. During the last years, some researchers considered the extension of TGR to possibly cyclic term graphs, which ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
(Show Context)
Acyclic Term Graphs are able to represent terms with sharing, and the relationship between Term Graph Rewriting (TGR) and Term Rewrtiting (TR) is now well understood [BvEG + 87, HP91]. During the last years, some researchers considered the extension of TGR to possibly cyclic term graphs, which can represent possibly infinite, rational terms. In [KKSdV94] the authors formalize the classical relationship between TGR and TR as an "adequate mapping" between rewriting systems, and extend it by proving that unraveling is an adequate mapping from cyclic TGR to rational, infinitary term rewriting: In fact, a single graph reduction may correspond to an infinite sequence of term reductions. Using the same notions, we propose a different adequacy result, showing that unraveling is an adequate mapping from cyclic TGR to rational parallel term rewriting, where at each reduction infinitely many rules can be applied in parallel. We also argue that our adequacy result is more natural...
Vries. An extensional Böhm model
 In Proceedings of the 13th International Conference on Rewriting Techniques and Applications (RTA 2002
, 2002
"... Abstract. We show the existence of an infinitary confluent and normalising extension of the finite extensional lambda calculus with beta and eta. Besides infinite beta reductions also infinite eta reductions are possible in this extension, and terms without head normal form can be reduced to bottom ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We show the existence of an infinitary confluent and normalising extension of the finite extensional lambda calculus with beta and eta. Besides infinite beta reductions also infinite eta reductions are possible in this extension, and terms without head normal form can be reduced to bottom. As corollaries we obtain a simple, syntax based construction of an extensional Böhm model of the finite lambda calculus; and a simple, syntax based proof that two lambda terms have the same semantics in this model if and only if they have the same etaBöhm tree if and only if they are observationally equivalent wrt to beta normal forms. The confluence proof reduces confluence of beta, bottom and eta via infinitary commutation and postponement arguments to confluence of beta and bottom and confluence of eta. We give counterexamples against confluence of similar extensions based on the identification of the terms without weak head normal form and the terms without top normal form (rootactive terms) respectively. 1
The category theoretic solution of recursive program schemes
 Proc. First Internat. Conf. on Algebra and Coalgebra in Computer Science (CALCO 2005), Lecture Notes in Computer Science
, 2006
"... Abstract. This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the categorytheoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: worki ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
(Show Context)
Abstract. This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the categorytheoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: working only in categories with “enough final coalgebras ” we show how to formulate, solve, and study recursive program schemes. Our general theory is algebraic and so avoids using ordered, or metric structures. Our work generalizes the previous approaches which do use this extra structure by isolating the key concepts needed to study substitution in infinite trees, including secondorder substitution. As special cases of our interpreted solutions we obtain the usual denotational semantics using complete partial orders, and the one using complete metric spaces. Our theory also encompasses implicitly defined objects which are not usually taken to be related to recursive program schemes. For example, the classical Cantor twothirds set falls out as an interpreted
Convergence of Program Transformers in the Metric Space of Trees
, 1998
"... . In recent years increasing consensus has emerged that program transformers, e.g., partial evaluation and unfold/fold transformations, should terminate; a compiler should stop even if it performs fancy optimizations! A number of techniques to ensure termination of program transformers have been inv ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
. In recent years increasing consensus has emerged that program transformers, e.g., partial evaluation and unfold/fold transformations, should terminate; a compiler should stop even if it performs fancy optimizations! A number of techniques to ensure termination of program transformers have been invented, but their correctness proofs are sometimes long and involved. We present a framework for proving termination of program transformers, cast in the metric space of trees. We first introduce the notion of an abstract program transformer; a number of wellknown program transformers can be viewed as instances of this notion. We then formalize what it means that an abstract program transformer terminates and give a general sufficient condition for an abstract program transformer to terminate. We also consider some specific techniques for satisfying the condition. As applications we show that termination of some wellknown program transformers either follows directly from the specific techn...