Results 21  30
of
156
Towards Parallel Programming by Transformation: The FAN Skeleton Framework
, 2001
"... A Functional Abstract Notation (FAN) is proposed for the specification and design of parallel algorithms by means of skeletons  highlevel patterns with parallel semantics. The main weakness of the current programming systems based on skeletons is that the user is still responsible for finding the ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
A Functional Abstract Notation (FAN) is proposed for the specification and design of parallel algorithms by means of skeletons  highlevel patterns with parallel semantics. The main weakness of the current programming systems based on skeletons is that the user is still responsible for finding the most appropriate skeleton composition for a given application and a given parallel architecture. We describe a transformational framework for the development of skeletal programs which is aimed at filling this gap. The framework makes use of transformation rules which are semantic equivalences among skeleton compositions. For a given problem, an initial, possibly inefficient skeleton specification is refined by applying a sequence of transformations. Transformations are guided by a set of performance prediction models which forecast the behavior of each skeleton and the performance benefits of different rules. The design process is supported by a graphical tool which locates applicable transformations and provides performance estimates, thereby helping the programmer in navigating through the program refinement space. We give an overview of the FAN framework and exemplify its use with performancedirected program derivations for simple case studies. Our experience can be viewed as a first feasibility study of methods and tools for transformational, performancedirected parallel programming using skeletons.
Relational analysis of algebraic datatypes
 In Joint 10th European Software Engineering Conference (ESEC) and 13th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE
, 2005
"... We present a technique that enables the use of finite model finding to check the satisfiability of certain formulas whose intended models are infinite. Such formulas arise when using the language of sets and relations to reason about structured values such as algebraic datatypes. The key idea of our ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
We present a technique that enables the use of finite model finding to check the satisfiability of certain formulas whose intended models are infinite. Such formulas arise when using the language of sets and relations to reason about structured values such as algebraic datatypes. The key idea of our technique is to identify a natural syntactic class of formulas in relational logic for which reasoning about infinite structures can be reduced to reasoning about finite structures. As a result, when a formula belongs to this class, we can use existing finite model finding tools to check whether the formula holds in the desired infinite model. 1
Workflow patterns in orc
 In Proceedings of Coordinationâ€™06, volume 4038 of LNCS
, 2006
"... Abstract. Van der Aalst recently proposed a set of workflow patterns to characterize the kinds of control flow that appear frequently in workflow processes. These patterns are useful for evaluating the capabilities of workflow systems and models. In this paper we provide implementations of the workf ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
Abstract. Van der Aalst recently proposed a set of workflow patterns to characterize the kinds of control flow that appear frequently in workflow processes. These patterns are useful for evaluating the capabilities of workflow systems and models. In this paper we provide implementations of the workflow patterns in Orc, a new process calculus for orchestrating widearea computations. A key feature of the Orc implementations is that they are expressed as definitions that can be reused as needed. 1
The Worker/Wrapper Transformation
 Journal of Functional Programming
, 2009
"... The worker/wrapper transformation is a technique for changing the type of a computation, usually with the aim of improving its performance. It has been used by compiler writers for many years, but the technique is little known in the wider functional programming community, and has never been describ ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
The worker/wrapper transformation is a technique for changing the type of a computation, usually with the aim of improving its performance. It has been used by compiler writers for many years, but the technique is little known in the wider functional programming community, and has never been described precisely. In this article we explain, formalise and explore the generality of the worker/wrapper transformation. We also provide a systematic recipe for its use as an equational reasoning technique for improving the performance of programs, and illustrate the power of this recipe using a range of examples. 1
Achieving information flow security through precise control of effects
 In 18th IEEE Computer Security Foundations Workshop
, 2005
"... This paper advocates a novel approach to the construction of secure software: controlling information flow and maintaining integrity via monadic encapsulation of effects. This approach is constructive, relying on properties of monads and monad transformers to build, verify, and extend secure softwar ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
This paper advocates a novel approach to the construction of secure software: controlling information flow and maintaining integrity via monadic encapsulation of effects. This approach is constructive, relying on properties of monads and monad transformers to build, verify, and extend secure software systems. We illustrate this approach by construction of abstract operating systems called separation kernels. Starting from a mathematical model of sharedstate concurrency based on monads of resumptions and state, we outline the development by stepwise refinements of separation kernels supporting Unixlike system calls, interdomain communication, and a formally verified security policy (domain separation). Because monads may be easily and safely represented within any pure, higherorder, typed functional language, the resulting system models may be directly realized within a language such as Haskell. 1.
Fusion of Recursive Programs with Computational Effects
 Theor. Comp. Sci
, 2000
"... Fusion laws permit to eliminate various of the intermediate data structures that are created in function compositions. The fusion laws associated with the traditional recursive operators on datatypes cannot in general be used to transform recursive programs with effects. Motivated by this fact, t ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Fusion laws permit to eliminate various of the intermediate data structures that are created in function compositions. The fusion laws associated with the traditional recursive operators on datatypes cannot in general be used to transform recursive programs with effects. Motivated by this fact, this paper addresses the definition of two recursive operators on datatypes that capture functional programs with effects. Effects are assumed to be modeled by monads. The main goal is thus the derivation of fusion laws for the new operators. One of the new operators is called monadic unfold. It captures programs (with effects) that generate a data structure in a standard way. The other operator is called monadic hylomorphism, and corresponds to programs formed by the composition of a monadic unfold followed by a function defined by structural induction on the data structure that the monadic unfold generates. 1 Introduction A common approach to program design in functional programmin...
Design Patterns as HigherOrder DatatypeGeneric Programs
, 2006
"... Design patterns are reusable abstractions in objectoriented software. However, using current mainstream programming languages, these elements can only be expressed extralinguistically: as prose, pictures, and prototypes. We believe that this is not inherent in the patterns themselves, but evidence ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
Design patterns are reusable abstractions in objectoriented software. However, using current mainstream programming languages, these elements can only be expressed extralinguistically: as prose, pictures, and prototypes. We believe that this is not inherent in the patterns themselves, but evidence of a lack of expressivity in the languages of today. We expect that, in the languages of the future, the code parts of design patterns will be expressible as reusable library components. Indeed, we claim that the languages of tomorrow will suffice; the future is not far away. All that is needed, in addition to commonlyavailable features, are higherorder and datatypegeneric constructs; these features are already or nearly available now. We argue the case by presenting higherorder datatypegeneric programs capturing ORIGAMI, a small suite of patterns for recursive data structures.
An Accumulative Parallel Skeleton for All
, 2001
"... Parallel skeletons intend to encourage programmers to build... ..."
Abstract

Cited by 14 (11 self)
 Add to MetaCart
Parallel skeletons intend to encourage programmers to build...
Polytypic Programming With Ease
, 1999
"... A functional polytypic program is one that is parameterised by datatype. Since polytypic functions are defined by induction on types rather than by induction on values they typically operate on a higher level of abstraction than their monotypic counterparts. However, polytypic programming is not nec ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
A functional polytypic program is one that is parameterised by datatype. Since polytypic functions are defined by induction on types rather than by induction on values they typically operate on a higher level of abstraction than their monotypic counterparts. However, polytypic programming is not necessarily more complicated than conventional programming. We show that a polytypic function is uniquely defined by its action on constant functors, projection functors, sums, and products. This information is sufficient to specialize a polytypic function to arbitrary polymorphic datatypes, including mutually recursive datatypes and nested datatypes. The key idea is to use infinite trees as index sets for polytypic functions and to interpret datatypes as algebraic trees. This approach appears both to be simpler, more general, and more efficient than previous ones which are based on the initial algebra semantics of datatypes. Polytypic functions enjoy polytypic properties. We show that wellkno...
The Generic Approximation Lemma
 Information Processing Letters
, 2001
"... The approximation lemma is a simplification of the wellknown take lemma, and is used to prove properties of programs that produce lists of values. We show how the approximation lemma, unlike the take lemma, can naturally be generalised from lists to a large class of datatypes, and present a gen ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
The approximation lemma is a simplification of the wellknown take lemma, and is used to prove properties of programs that produce lists of values. We show how the approximation lemma, unlike the take lemma, can naturally be generalised from lists to a large class of datatypes, and present a generic approximation lemma that is parametric in the datatype to which it applies. As a useful byproduct, we find that generalising the approximation lemma in this way also simplifies its proof. Keywords: Programming calculi; Functional Programming 1 Introduction The standard proof method for programs that consume lists of values is structural induction. However, this method is not applicable to the dual case of programs that produce lists of values, because in general such programs do not have a list argument over which to perform induction. Proof methods that are applicable to such programs have recently been surveyed in [6], and include fixpoint induction [4], the take lemma [3], coin...