Results 1  10
of
188
A tutorial on particle filters for online nonlinear/nonGaussian Bayesian tracking
 IEEE TRANSACTIONS ON SIGNAL PROCESSING
, 2002
"... Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and nonGaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data online as it arrives, both from the point of view o ..."
Abstract

Cited by 1977 (2 self)
 Add to MetaCart
(Show Context)
Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and nonGaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data online as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/nonGaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or “particle”) representations of probability densities, which can be applied to any statespace model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.
Sequential Monte Carlo Methods for Dynamic Systems
 Journal of the American Statistical Association
, 1998
"... A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three ..."
Abstract

Cited by 649 (12 self)
 Add to MetaCart
(Show Context)
A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three ingredients: importance sampling and resampling, rejection sampling, and Markov chain iterations. We deliver a guideline on how they should be used and under what circumstance each method is most suitable. Through the analysis of differences and connections, we consolidate these methods into a generic algorithm by combining desirable features. In addition, we propose a general use of RaoBlackwellization to improve performances. Examples from econometrics and engineering are presented to demonstrate the importance of RaoBlackwellization and to compare different Monte Carlo procedures. Keywords: Blind deconvolution; Bootstrap filter; Gibbs sampling; Hidden Markov model; Kalman filter; Markov...
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH ..."
Abstract

Cited by 590 (25 self)
 Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH (GARCH) models [see Bollerslev, Chou, and Kroner (1992) for a survey of ARCH modeling], both the mean and logvolatility equations have separate error terms. The ease of evaluating the ARCH likelihood function and the ability of the ARCH specification to accommodate the timevarying volatility found in many economic time series has fostered an explosion in the use of ARCH models. On the other hand, the likelihood function for stochastic volatility models is difficult to evaluate, and hence these models have had limited empirical application
Stochastic volatility: likelihood inference and comparison with ARCH models
 Review of Economic Studies
, 1998
"... In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihoodbased framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offse ..."
Abstract

Cited by 584 (41 self)
 Add to MetaCart
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihoodbased framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offset mixture model, followed by an importance reweighting procedure. This approach is compared with several alternative methods using real data. The paper also develops simulationbased methods for filtering, likelihood evaluation and model failure diagnostics. The issue of model choice using nonnested likelihood ratios and Bayes factors is also investigated. These methods are used to compare the fit of stochastic volatility and GARCH models. All the procedures are illustrated in detail. 1.
An Improved Particle Filter for Nonlinear Problems
, 2004
"... The Kalman filter provides an effective solution to the linearGaussian filtering problem. However, where there is nonlinearity, either in the model specification or the observation process, other methods are required. We consider methods known generically as particle filters, which include the c ..."
Abstract

Cited by 268 (10 self)
 Add to MetaCart
The Kalman filter provides an effective solution to the linearGaussian filtering problem. However, where there is nonlinearity, either in the model specification or the observation process, other methods are required. We consider methods known generically as particle filters, which include the condensation algorithm and the Bayesian bootstrap or sampling importance resampling (SIR) filter. These filters
Do stock prices and volatility jump? Reconciling evidence from spot and option prices
, 2001
"... This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation ..."
Abstract

Cited by 225 (5 self)
 Add to MetaCart
This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation period. This contrasts previous findings where stochastic volatility paths are found to be too smooth relative to the option implied dynamics. While the models perform well during the high volatility estimation period, they tend to overprice long dated contracts outofsample. This evidence points towards a too simplistic specification of the mean dynamics of volatility.
Mixture Kalman filters
, 2000
"... In treating dynamic systems,sequential Monte Carlo methods use discrete samples to represent a complicated probability distribution and use rejection sampling, importance sampling and weighted resampling to complete the online `filtering' task. We propose a special sequential Monte Carlo metho ..."
Abstract

Cited by 219 (6 self)
 Add to MetaCart
In treating dynamic systems,sequential Monte Carlo methods use discrete samples to represent a complicated probability distribution and use rejection sampling, importance sampling and weighted resampling to complete the online `filtering' task. We propose a special sequential Monte Carlo method,the mixture Kalman filter, which uses a random mixture of the Gaussian distributions to approximate a target distribution. It is designed for online estimation and prediction of conditional and partial conditional dynamic linear models,which are themselves a class of widely used nonlinear systems and also serve to approximate many others. Compared with a few available filtering methods including Monte Carlo methods,the gain in efficiency that is provided by the mixture Kalman filter can be very substantial. Another contribution of the paper is the formulation of many nonlinear systems into conditional or partial conditional linear form,to which the mixture Kalman filter can be applied. Examples in target tracking and digital communications are given to demonstrate the procedures proposed.
Model Selection and the Principle of Minimum Description Length
 Journal of the American Statistical Association
, 1998
"... This paper reviews the principle of Minimum Description Length (MDL) for problems of model selection. By viewing statistical modeling as a means of generating descriptions of observed data, the MDL framework discriminates between competing models based on the complexity of each description. This ..."
Abstract

Cited by 195 (8 self)
 Add to MetaCart
This paper reviews the principle of Minimum Description Length (MDL) for problems of model selection. By viewing statistical modeling as a means of generating descriptions of observed data, the MDL framework discriminates between competing models based on the complexity of each description. This approach began with Kolmogorov's theory of algorithmic complexity, matured in the literature on information theory, and has recently received renewed interest within the statistics community. In the pages that follow, we review both the practical as well as the theoretical aspects of MDL as a tool for model selection, emphasizing the rich connections between information theory and statistics. At the boundary between these two disciplines, we find many interesting interpretations of popular frequentist and Bayesian procedures. As we will see, MDL provides an objective umbrella under which rather disparate approaches to statistical modeling can coexist and be compared. We illustrate th...
Monte Carlo smoothing for nonlinear time series
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2004
"... We develop methods for performing smoothing computations in general statespace models. The methods rely on a particle representation of the filtering distributions, and their evolution through time using sequential importance sampling and resampling ideas. In particular, novel techniques are pr ..."
Abstract

Cited by 153 (18 self)
 Add to MetaCart
We develop methods for performing smoothing computations in general statespace models. The methods rely on a particle representation of the filtering distributions, and their evolution through time using sequential importance sampling and resampling ideas. In particular, novel techniques are presented for generation of sample realizations of historical state sequences. This is carried out in a forwardfiltering backwardsmoothing procedure which can be viewed as the nonlinear, nonGaussian counterpart of standard Kalman filterbased simulation smoothers in the linear Gaussian case. Convergence in the meansquared error sense of the smoothed trajectories is proved, showing the validity of our proposed method. The methods are tested in a substantial application for the processing of speech signals represented by a timevarying autoregression and parameterised in terms of timevarying partial correlation coe#cients, comparing the results of our algorithm with those from a simple smoother based upon the filtered trajectories.
inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts
 Journal of Business and Economic Statistics
, 1993
"... We examine autoregressive time series models that are subject to regime switching. These shifts are determined by the outcome of an unobserved twostate indicator variable that follows a Markov process with unknown transition probabilities. A Bayesian framework is developed in which the unobserved s ..."
Abstract

Cited by 147 (5 self)
 Add to MetaCart
We examine autoregressive time series models that are subject to regime switching. These shifts are determined by the outcome of an unobserved twostate indicator variable that follows a Markov process with unknown transition probabilities. A Bayesian framework is developed in which the unobserved states, one for each time point, are treated as missing data and then analyzed via the simulation tool of Gibbs sampling. This method is expedient because the conditional posterior distribution f the parameters, given the states, and the conditional posterior distribution of the states, given the parameters, all have a form amenable to Monte Carlo sampling. The approach is straightforward and generates marginal posterior distributions for all parameters of interest. Posterior distributions of the states, future observations, and the residuals, averaged over the parameter space are also obtained. Several examples with real and artificial data sets and weak prior information illustrate the usefulness of the methodology.