Results 1 
1 of
1
Circuit Optimization via Adjoint Lagrangians
 IEEE INTERNATIONAL CONFERENCE ON COMPUTERAIDED DESIGN
, 1997
"... The circuit tuning problem is best approached by means of gradientbased nonlinear optimization algorithms. For large circuits, gradient computation can be the bottleneck in the optimization procedure. Traditionally, when the number of measurements is large relative to the number of tunable paramete ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
The circuit tuning problem is best approached by means of gradientbased nonlinear optimization algorithms. For large circuits, gradient computation can be the bottleneck in the optimization procedure. Traditionally, when the number of measurements is large relative to the number of tunable parameters, the direct method [2] is used to repeatedly solve the associated sensitivity circuit to obtain all the necessary gradients. Likewise, when the parameters outnumber the measurements, the adjoint method [1] is employed to solve the adjoint circuit repeatedly for each measurement to compute the sensitivities. In this paper, we propose the adjoint Lagrangian method, which computes all the gradients necessary for augmentedLagrangianbased optimization in a single adjoint analysis. After the nominal simulation of the circuit has been carried out, the gradients of the merit function are expressed as the gradients of a weighted sum of circuit measurements. The weights are dependent on the nominal solution and on optimizer quantities such as Lagrange multipliers. By suitably choosing the excitations of the adjoint circuit, the gradients of the merit function are computed via a single adjoint analysis, irrespective of the number of measurements and the number of parameters of the optimization. This procedure requires close integration between the nonlinear optimization software and the circuit simulation program. The adjoint