Results 1 
6 of
6
Process algebra for synchronous communication
 Inform. and Control
, 1984
"... Within the context of an algebraic theory of processes, an equational specification of process cooperation is provided. Four cases are considered: free merge or interleaving, merging with communication, merging with mutual exclusion of tight regions, and synchronous process cooperation. The rewrite ..."
Abstract

Cited by 364 (51 self)
 Add to MetaCart
Within the context of an algebraic theory of processes, an equational specification of process cooperation is provided. Four cases are considered: free merge or interleaving, merging with communication, merging with mutual exclusion of tight regions, and synchronous process cooperation. The rewrite system behind the communication algebra is shown to be confluent and terminating (modulo its permutative reductions). Further, some relationships are shown to hold between the four concepts of merging. © 1984 Academic Press, Inc.
Termination of Term Rewriting Using Dependency Pairs
 Comput. Sci
, 2000
"... We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left and righthand sides of rewrite rules, but introduce the notion of dependency pairs to compare lefthand sides with special subter ..."
Abstract

Cited by 210 (47 self)
 Add to MetaCart
We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left and righthand sides of rewrite rules, but introduce the notion of dependency pairs to compare lefthand sides with special subterms of the righthand sides. This results in a technique which allows to apply existing methods for automated termination proofs to term rewriting systems where they failed up to now. In particular, there are numerous term rewriting systems where a direct termination proof with simplification orderings is not possible, but in combination with our technique, wellknown simplification orderings (such as the recursive path ordering, polynomial orderings, or the KnuthBendix ordering) can now be used to prove termination automatically. Unlike previous methods, our technique for proving innermost termination automatically can also be applied to prove innermost termination of term rewriting systems that are not terminating. Moreover, as innermost termination implies termination for certain classes of term rewriting systems, this technique can also be used for termination proofs of such systems.
Confluence properties of Weak and Strong Calculi of Explicit Substitutions
 JOURNAL OF THE ACM
, 1996
"... Categorical combinators [12, 21, 43] and more recently oecalculus [1, 23], have been introduced to provide an explicit treatment of substitutions in the calculus. We reintroduce here the ingredients of these calculi in a selfcontained and stepwise way, with a special emphasis on confluence prope ..."
Abstract

Cited by 120 (7 self)
 Add to MetaCart
Categorical combinators [12, 21, 43] and more recently oecalculus [1, 23], have been introduced to provide an explicit treatment of substitutions in the calculus. We reintroduce here the ingredients of these calculi in a selfcontained and stepwise way, with a special emphasis on confluence properties. The main new results of the paper w.r.t. [12, 21, 1, 23] are the following: 1. We present a confluent weak calculus of substitutions, where no variable clashes can be feared. 2. We solve a conjecture raised in [1]: oecalculus is not confluent (it is confluent on ground terms only). This unfortunate result is "repaired" by presenting a confluent version of oecalculus, named the Envcalculus in [23], called here the confluent oecalculus.
Rewriting systems for Coxeter groups
 J. Pure Appl. Algebra
, 1994
"... A finite complete rewriting system for a group is a finite presentation which gives a solution to the word problem and a regular language of normal forms for the group. In this paper it is shown that the fundamental group of an orientable closed surface of genus g has a finite complete rewriting sys ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
A finite complete rewriting system for a group is a finite presentation which gives a solution to the word problem and a regular language of normal forms for the group. In this paper it is shown that the fundamental group of an orientable closed surface of genus g has a finite complete rewriting system, using the usual generators a1,.., ag, b1,.., bg along with generators representing their inverses. Constructions of finite complete rewriting systems are also given for any Coxeter group G satisfying one of the following hypotheses. 1) G has three or fewer generators. 2) G does not contain a special subgroup of the form
doi:10.1006/inco.2002.3160 A Characterisation of Multiply Recursive Functions with Higman’s Lemma
, 1999
"... We prove that string rewriting systems which reduce by Higman’s lemma exhaust the multiply recursive functions. This result provides a full characterisation of the expressiveness of Higman’s lemma when applied to rewriting theory. The underlying argument of our construction is to connect the order t ..."
Abstract
 Add to MetaCart
We prove that string rewriting systems which reduce by Higman’s lemma exhaust the multiply recursive functions. This result provides a full characterisation of the expressiveness of Higman’s lemma when applied to rewriting theory. The underlying argument of our construction is to connect the order type and the derivation length via the Hardy hierarchy. C ○ 2002 Elsevier Science (USA) 1.