Results 1  10
of
29
Which Problems Have Strongly Exponential Complexity?
 Journal of Computer and System Sciences
, 1998
"... For several NPcomplete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of subexponential algorithms for these problems. We introduce a generalized reduction which we call SubExponential Reduction Family (SERF) t ..."
Abstract

Cited by 188 (7 self)
 Add to MetaCart
(Show Context)
For several NPcomplete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of subexponential algorithms for these problems. We introduce a generalized reduction which we call SubExponential Reduction Family (SERF) that preserves subexponential complexity. We show that CircuitSAT is SERFcomplete for all NPsearch problems, and that for any fixed k, kSAT, kColorability, kSet Cover, Independent Set, Clique, Vertex Cover, are SERFcomplete for the class SNP of search problems expressible by second order existential formulas whose first order part is universal. In particular, subexponential complexity for any one of the above problems implies the same for all others. We also look at the issue of proving strongly exponential lower bounds for AC 0 ; that is, bounds of the form 2 \Omega\Gamma n) . This problem is even open for depth3 circuits. In fact, such a bound for depth3 circuits with even l...
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 143 (3 self)
 Add to MetaCart
(Show Context)
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Finding Hard Instances of the Satisfiability Problem: A Survey
, 1997
"... . Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case ..."
Abstract

Cited by 125 (1 self)
 Add to MetaCart
. Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case complexity, the threshold phenomenon, known lower bounds for certain classes of algorithms, and the problem of generating hard instances with solutions.
New methods for 3SAT decision and worstcase analysis
 THEORETICAL COMPUTER SCIENCE
, 1999
"... We prove the worstcase upper bound 1:5045 n for the time complexity of 3SAT decision, where n is the number of variables in the input formula, introducing new methods for the analysis as well as new algorithmic techniques. We add new 2 and 3clauses, called "blocked clauses", generali ..."
Abstract

Cited by 74 (14 self)
 Add to MetaCart
(Show Context)
We prove the worstcase upper bound 1:5045 n for the time complexity of 3SAT decision, where n is the number of variables in the input formula, introducing new methods for the analysis as well as new algorithmic techniques. We add new 2 and 3clauses, called "blocked clauses", generalizing the extension rule of "Extended Resolution." Our methods for estimating the size of trees lead to a refined measure of formula complexity of 3clausesets and can be applied also to arbitrary trees. Keywords: 3SAT, worstcase upper bounds, analysis of algorithms, Extended Resolution, blocked clauses, generalized autarkness. 1 Introduction In this paper we study the exponential part of time complexity for 3SAT decision and prove the worstcase upper bound 1:5044:: n for n the number of variables in the input formula, using new algorithmic methods as well as new methods for the analysis. These methods also deepen the already existing approaches in a systematically manner. The following results...
F.: Satisfiability coding lemma
 In: Preliminary version in 38th Annual Symposium on Foundations of Computer Science
, 1999
"... ..."
(Show Context)
On the Complexity of kSAT
, 2001
"... The kSAT problem is to determine if a given kCNF has a satisfying assignment. It is a celebrated open question as to whether it requires exponential time to solve kSAT for k 3. Here exponential time means 2 $n for some $>0. In this paper, assuming that, for k 3, kSAT requires exponential time ..."
Abstract

Cited by 70 (5 self)
 Add to MetaCart
The kSAT problem is to determine if a given kCNF has a satisfying assignment. It is a celebrated open question as to whether it requires exponential time to solve kSAT for k 3. Here exponential time means 2 $n for some $>0. In this paper, assuming that, for k 3, kSAT requires exponential time complexity, we show that the complexity of kSAT increases as k increases. More precisely, for k 3, define s k=inf[$: there exists 2 $n algorithm for solving kSAT]. Define ETH (ExponentialTime Hypothesis) for kSAT as follows: for k 3, s k>0. In this paper, we show that s k is increasing infinitely often assuming ETH for kSAT. Let s be the limit of s k. We will in fact show that s k (1&d k) s for some constant d>0. We prove this result by bringing together the ideas of critical clauses and the Sparsification Lemma to reduce the satisfiability of a kCNF to the satisfiability of a disjunction of 2 =n k$CNFs in fewer variables for some k $ k and arbitrarily small =>0. We also show that such a disjunction can be computed in time 2 =n for arbitrarily small =>0.
PartitionBased Logical Reasoning for FirstOrder and Propositional Theories
 Artificial Intelligence
, 2000
"... In this paper we provide algorithms for reasoning with partitions of related logical axioms in propositional and firstorder logic (FOL). We also provide a greedy algorithm that automatically decomposes a set of logical axioms into partitions. Our motivation is twofold. First, we are concerned with ..."
Abstract

Cited by 57 (9 self)
 Add to MetaCart
(Show Context)
In this paper we provide algorithms for reasoning with partitions of related logical axioms in propositional and firstorder logic (FOL). We also provide a greedy algorithm that automatically decomposes a set of logical axioms into partitions. Our motivation is twofold. First, we are concerned with how to reason e#ectively with multiple knowledge bases that have overlap in content. Second, we are concerned with improving the e#ciency of reasoning over a set of logical axioms by partitioning the set with respect to some detectable structure, and reasoning over individual partitions. Many of the reasoning procedures we present are based on the idea of passing messages between partitions. We present algorithms for reasoning using forward messagepassing and using backward messagepassing with partitions of logical axioms. Associated with each partition is a reasoning procedure. We characterize a class of reasoning procedures that ensures completeness and soundness of our messagepassing ...
Deciding propositional tautologies: Algorithms and their complexity
, 1997
"... We investigate polynomial reductions and efficient branching rules for algorithms deciding propositional tautologies for DNF and coNPcomplete subclasses. Upper bounds on the time complexity are given with exponential part 2 ff\Delta(F ) where (F ) is one of the measures n(F ) = #f variables g, ` ..."
Abstract

Cited by 36 (8 self)
 Add to MetaCart
(Show Context)
We investigate polynomial reductions and efficient branching rules for algorithms deciding propositional tautologies for DNF and coNPcomplete subclasses. Upper bounds on the time complexity are given with exponential part 2 ff\Delta(F ) where (F ) is one of the measures n(F ) = #f variables g, `(F ) = #f literal occurrences g and k(F ) = #f clauses g. We start with a discussion of variants of the algorithms from [Monien/Speckenmeyer85] and [Luckhardt84] with the known upper bound 2 0:695\Deltan for 3DNF and (roughly) (2 \Delta (1 \Gamma 2 \Gammap )) n for pDNF, p 3, where p is the maximal clause length, giving now an uniform treatment for all pDNF including the easy decidable case p 2. Recently for 3DNF the bound has been lowered to 2 0:5892\Deltan ([K2]; see also [Sch2], [K3]). In this article further improvements are achieved by studying two additional characteristic groups of parameters. The first group differentiates according to the maximal numbers (a; b) of occ...
On a generalization of extended resolution
 DISCRETE APPLIED MATHEMATICS 96–97 (1999) 149–176
, 1998
"... ... Inform. Comput., submitted); yielding new worstcase upper bounds) a natural parameterized generalization GER of Extended Resolution (ER) is introduced. ER can simulate polynomially GER, but GER allows special cases for which exponential lower bounds can be proven. ..."
Abstract

Cited by 25 (8 self)
 Add to MetaCart
... Inform. Comput., submitted); yielding new worstcase upper bounds) a natural parameterized generalization GER of Extended Resolution (ER) is introduced. ER can simulate polynomially GER, but GER allows special cases for which exponential lower bounds can be proven.
Worstcase Analysis, 3SAT Decision and Lower Bounds: Approaches for Improved SAT Algorithms
"... . New methods for worstcase analysis and (3)SAT decision are presented. The focus lies on the central ideas leading to the improved bound 1:5045 n for 3SAT decision ([Ku96]; n is the number of variables). The implications for SAT decision in general are discussed and elucidated by a number of h ..."
Abstract

Cited by 24 (7 self)
 Add to MetaCart
. New methods for worstcase analysis and (3)SAT decision are presented. The focus lies on the central ideas leading to the improved bound 1:5045 n for 3SAT decision ([Ku96]; n is the number of variables). The implications for SAT decision in general are discussed and elucidated by a number of hypothesis'. In addition an exponential lower bound for a general class of SATalgorithms is given and the only possibilities to remain under this bound are pointed out. In this article the central ideas leading to the improved worstcase upper bound 1:5045 n for 3SAT decision ([Ku96]) are presented. 1) In nine sections the following subjects are treated: 1. "Gauging of branchings": The " function" and the concept of a "distance function" is introduced, our main tools for the analysis of SAT algorithms, and, as we propose, also a basis for (complete) practical algorithms. 2. "Estimating the size of arbitrary trees": The " Lemma" is presented, yielding an upper bound for the number of l...