Results 1  10
of
12
A Fast MultiDimensional Algorithm for Drawing Large Graphs
 In Graph Drawing’00 Conference Proceedings
, 2000
"... We present a novel hierarchical forcedirected method for drawing large graphs. The algorithm produces a graph embedding in an Euclidean space E of any dimension. A two or three dimensional drawing of the graph is then obtained by projecting a higherdimensional embedding into a two or three dimensi ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
We present a novel hierarchical forcedirected method for drawing large graphs. The algorithm produces a graph embedding in an Euclidean space E of any dimension. A two or three dimensional drawing of the graph is then obtained by projecting a higherdimensional embedding into a two or three dimensional subspace of E. Projecting highdimensional drawings onto two or three dimensions often results in drawings that are "smoother" and more symmetric. Among the other notable features of our approach are the utilization of a maximal independent set filtration of the set of vertices of a graph, a fast energy function minimization strategy, e#cient memory management, and an intelligent initial placement of vertices. Our implementation of the algorithm can draw graphs with tens of thousands of vertices using a negligible amount of memory in less than one minute on a midrange PC. 1 Introduction Graphs are common in many applications, from data structures to networks, from software engineering...
Drawing on Physical Analogies
, 2001
"... in Sections 4.2 and 4.3. An asset of physical modeling that is often overlooked is its inherent exibility. For this reason, we conclude this chapter by listing examples of model speci cations tailored to speci c layout objectives. 4.1 The Springs Given a connected undirected graph with no partic ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
in Sections 4.2 and 4.3. An asset of physical modeling that is often overlooked is its inherent exibility. For this reason, we conclude this chapter by listing examples of model speci cations tailored to speci c layout objectives. 4.1 The Springs Given a connected undirected graph with no particular background information, the following two criteria of readable layout seem to be generally agreed upon for the conventional twodimensional straightline representation. 1. Vertices should spread well on the page. 2. Adjacent vertices should be close. Only intuitive explanations can be oered. While uniform vertex distribution reduces clutter, the implied uniform edge lengths leave an undistorted impression of the graph. Since \clutter" and \distortion" already have physical connotations, it seems fairly natural to start thinking of a more speci c physical analogy. We are used to observing even spacing between repelling objects. This makes it natural to imagine vertices behaving l
ThreeDimensional Orthogonal Graph Drawing with Optimal Volume
"... An orthogonal drawing of a graph is an embedding of the graph in the rectangular grid, with vertices represented by axisaligned boxes, and edges represented by paths in the grid which only possibly intersect at common endpoints. In this paper, we study threedimensional orthogonal drawings and prov ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
An orthogonal drawing of a graph is an embedding of the graph in the rectangular grid, with vertices represented by axisaligned boxes, and edges represented by paths in the grid which only possibly intersect at common endpoints. In this paper, we study threedimensional orthogonal drawings and provide lower bounds for three scenarios: (1) drawings where vertices have bounded aspect ratio, (2) drawings where the surface of vertices is proportional to their degree, and (3) drawings without any such restrictions. Then we show that these lower bounds are asymptotically optimal, by providing constructions that match the lower bounds in all scenarios within an order of magnitude.
Drawing Clusters and Hierarchies
, 2001
"... with respect to edges can be of interest as well. A method to do this can be found in Paulish (1993, Chapter 5). Clustering of graphs means grouping of vertices into components called clusters. Thus, clustering is related to partitioning the vertex set. Denition 8.1 (Partition). A (kway) partitio ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
with respect to edges can be of interest as well. A method to do this can be found in Paulish (1993, Chapter 5). Clustering of graphs means grouping of vertices into components called clusters. Thus, clustering is related to partitioning the vertex set. Denition 8.1 (Partition). A (kway) partition of a set C is a family of subsets (C 1 ; : : : ; C k ) with { S k i=1 C i = C and { C i \ C j = ; for i 6= j. The C i are called parts. We refer to a 2way partition as a bipartition. Now, we can dene one of the most basic denitions of clustered graphs. 8. Drawing Clusters and Hierarchies 195<F14.
A New Algorithm and Open Problems in ThreeDimensional Orthogonal Graph Drawing
 Curtin University of Technology
, 1999
"... . In this paper we present an algorithm for 3D orthogonal drawing of arbitrary degree nvertex medge multigraphs with O(m 2 = p n) bounding box volume and 6 bends per edge route. This is the smallest known bound on the bounding box volume of 3D orthogonal multigraph drawings. We continue ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
. In this paper we present an algorithm for 3D orthogonal drawing of arbitrary degree nvertex medge multigraphs with O(m 2 = p n) bounding box volume and 6 bends per edge route. This is the smallest known bound on the bounding box volume of 3D orthogonal multigraph drawings. We continue the study of the tradeoff between bounding box volume and the number of bends in orthogonal graph drawings through a refined algorithm with O(m 2 ) bounding box volume and 5 bends per edge route. Many open problems in 3D orthogonal graph drawing are presented and potential avenues for their solution are discussed. 1 Introduction With applications including VLSI circuit design [4, 18, 20] and software engineering [14, 19, 23], there has been recent interest in 3D graph visualization. Proposed models include straightline drawings [6, 13, 16] and of interest in this paper orthogonal drawings [1, 2, 5, 8, 9, 10, 11, 15, 17, 25, 26, 27, 28]. The 3D orthogonal grid consists of grid po...
Balanced VertexOrderings of Graphs
, 2002
"... We consider the problem of determining a balanced ordering of the vertices of a graph; that is, the neighbors of each vertex v are as evenly distributed to the left and right of v as possible. This problem, which has applications in graph drawing for example, is shown to be NPhard, and remains N ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We consider the problem of determining a balanced ordering of the vertices of a graph; that is, the neighbors of each vertex v are as evenly distributed to the left and right of v as possible. This problem, which has applications in graph drawing for example, is shown to be NPhard, and remains NPhard for bipartite simple graphs with maximum degree six. We then describe and analyze a number of methods for determining a balanced vertexordering, obtaining optimal orderings for directed acyclic graphs and graphs with maximum degree three. Finally we
Lower Bounds for the Number of Bends in ThreeDimensional Orthogonal Graph Drawings
, 2003
"... This paper presents the first nontrivial lower bounds for the total number of bends in 3D orthogonal graph drawings with vertices represented by points. In particular, we prove lower bounds for the number of bends in 3D orthogonal drawings of complete simple graphs and multigraphs, which are tigh ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
This paper presents the first nontrivial lower bounds for the total number of bends in 3D orthogonal graph drawings with vertices represented by points. In particular, we prove lower bounds for the number of bends in 3D orthogonal drawings of complete simple graphs and multigraphs, which are tight in most cases. These result are used as the basis for the construction of infinite classes of cconnected simple graphs, multigraphs, and pseudographs (2 ≤ c ≤ 6) of maximum degree Δ (3 ≤ Δ ≤ 6), with lower bounds on the total number of bends for all members of the class. We also present lower bounds for the number of bends in general position 3D orthogonal graph drawings. These results have significant ramifications for the `2bends problem', which is one of the most important open problems in the field.
Orthogonal drawings with few layers
 PROC. 9TH INTERNATIONAL SYMP. ON GRAPH DRAWING (GD '01
, 2002
"... In this paper, we study 3dimensional orthogonal graph drawings. Motivated by the fact that only a limited number of layers is possible in VLSI technology, and also noting that a small number of layers is easier to parse for humans, we study drawings where one dimension is restricted to be very smal ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
In this paper, we study 3dimensional orthogonal graph drawings. Motivated by the fact that only a limited number of layers is possible in VLSI technology, and also noting that a small number of layers is easier to parse for humans, we study drawings where one dimension is restricted to be very small. We give algorithms to obtain pointdrawings with 3layers and 4 bends per edge, and algorithms to obtain boxdrawings with 2 layers and 2 bends per edge. Several other related results are included as well. Our constructions have optimal volume, which we prove by providing lower bounds.
Drawing a graph in a hypercube
, 2004
"... A ddimensional hypercube drawing of a graph represents the vertices by distinct points in {0, 1} d, such that the linesegments representing the edges do not cross. We study lower and upper bounds on the minimum number of dimensions in hypercube drawing of a given graph. This parameter turns out to ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
A ddimensional hypercube drawing of a graph represents the vertices by distinct points in {0, 1} d, such that the linesegments representing the edges do not cross. We study lower and upper bounds on the minimum number of dimensions in hypercube drawing of a given graph. This parameter turns out to be related to Sidon sets and antimagic injections. 1