Results 1 
6 of
6
Automata and coinduction (an exercise in coalgebra
 LNCS
, 1998
"... The classical theory of deterministic automata is presented in terms of the notions of homomorphism and bisimulation, which are the cornerstones of the theory of (universal) coalgebra. This leads to a transparent and uniform presentation of automata theory and yields some new insights, amongst which ..."
Abstract

Cited by 62 (16 self)
 Add to MetaCart
The classical theory of deterministic automata is presented in terms of the notions of homomorphism and bisimulation, which are the cornerstones of the theory of (universal) coalgebra. This leads to a transparent and uniform presentation of automata theory and yields some new insights, amongst which coinduction proof methods for language equality and language inclusion. At the same time, the present treatment of automata theory may serve as an introduction to coalgebra.
A Hierarchy of Probabilistic System Types
, 2003
"... We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors. This latter transformation preserves homomorphisms and thus bisimulations. For comparison of probabilistic system types we also need reflection of bisimulation. We build the hierarchy of probabilistic systems by exploiting the new result that the transformation also reflects bisimulation in case the natural transformation is componentwise injective and the first functor preserves weak pullbacks. Additionally, we illustrate the correspondence of concrete and coalgebraic bisimulation in the case of general Segalatype systems.
A coinductive calculus of streams
, 2005
"... We develop a coinductive calculus of streams based on the presence of a final coalgebra structure on the set of streams (infinite sequences of real numbers). The main ingredient is the notion of stream derivative, which can be used to formulate both coinductive proofs and definitions. In close analo ..."
Abstract

Cited by 27 (9 self)
 Add to MetaCart
We develop a coinductive calculus of streams based on the presence of a final coalgebra structure on the set of streams (infinite sequences of real numbers). The main ingredient is the notion of stream derivative, which can be used to formulate both coinductive proofs and definitions. In close analogy to classical analysis, the latter are presented as behavioural differential equations. A number of applications of the calculus are presented, including difference equations, analytical differential equations, continued fractions, and some problems from discrete mathematics and combinatorics.
A Study of Categories of Algebras and Coalgebras
, 2001
"... This thesis is intended to help develop the theory of coalgebras by, first, taking classic theorems in the theory of universal algebras and dualizing them and, second, developing an internal logic for categories of coalgebras. We begin with an introduction to the categorical approach to algebras and ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
This thesis is intended to help develop the theory of coalgebras by, first, taking classic theorems in the theory of universal algebras and dualizing them and, second, developing an internal logic for categories of coalgebras. We begin with an introduction to the categorical approach to algebras and the dual notion of coalgebras. Following this, we discuss (co)algebras for a (co)monad and develop a theory of regular subcoalgebras which will be used in the internal logic. We also prove that categories of coalgebras are complete, under reasonably weak conditions, and simultaneously prove the wellknown dual result for categories of algebras. We close the second chapter with a discussion of bisimulations in which we introduce a weaker notion of bisimulation than is current in the literature, but which is wellbehaved and reduces to the standard definition under the assumption of choice. The third chapter is a detailed look at three theorem's of G. Birkho# [Bir35, Bir44], presenting categorical proofs of the theorems which generalize the classical results and which can be easily dualized to apply to categories of coalgebras. The theorems of interest are the variety theorem, the equational completeness theorem and the subdirect product representation theorem. The duals of each of these theorems is discussed in detail, and the dual notion of "coequation" is introduced and several examples given. In the final chapter, we show that first order logic can be interpreted in categories of coalgebras and introduce two modal operators to first order logic to allow reasoning about "endomorphisminvariant" coequations and bisimulations internally. We also develop a translation of terms and formulas into the internal language of the base category, which preserves and reflects truth. La...
Final coalgebras and the HennessyMilner property
 Annals of Pure and Applied Logic
"... The existence of a final coalgebra is equivalent to the existence of a formal logic with a set (small class) of formulas that has the HennessyMilner property of distinguishing coalgebraic states up to bisimilarity. This applies to coalgebras of any functor on the category of sets for which the bisi ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The existence of a final coalgebra is equivalent to the existence of a formal logic with a set (small class) of formulas that has the HennessyMilner property of distinguishing coalgebraic states up to bisimilarity. This applies to coalgebras of any functor on the category of sets for which the bisimilarity relation is transitive. There are cases of functors that do have logics with the HennessyMilner property, but the only such logics have a proper class of formulas. The main theorem gives a representation of states of the final coalgebra as certain satisfiable sets of formulas. The key technical fact used is that any function between coalgebras that is truthpreserving and has a simple codomain must be a coalgebraic morphism.