Results 1  10
of
12
General logical metatheorems for functional analysis
, 2008
"... In this paper we prove general logical metatheorems which state that for large classes of theorems and proofs in (nonlinear) functional analysis it is possible to extract from the proofs effective bounds which depend only on very sparse local bounds on certain parameters. This means that the bounds ..."
Abstract

Cited by 31 (18 self)
 Add to MetaCart
In this paper we prove general logical metatheorems which state that for large classes of theorems and proofs in (nonlinear) functional analysis it is possible to extract from the proofs effective bounds which depend only on very sparse local bounds on certain parameters. This means that the bounds are uniform for all parameters meeting these weak local boundedness conditions. The results vastly generalize related theorems due to the second author where the global boundedness of the underlying metric space (resp. a convex subset of a normed space) was assumed. Our results treat general classes of spaces such as metric, hyperbolic, CAT(0), normed, uniformly convex and inner product spaces and classes of functions such as nonexpansive, HölderLipschitz, uniformly continuous, bounded and weakly quasinonexpansive ones. We give several applications in the area of metric fixed point theory. In particular, we show that the uniformities observed in a number of recently found effective bounds (by proof theoretic analysis) can be seen as instances of our general logical results.
Effective uniform bounds from proofs in abstract functional analysis
 CIE 2005 NEW COMPUTATIONAL PARADIGMS: CHANGING CONCEPTIONS OF WHAT IS COMPUTABLE
, 2005
"... ..."
Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces, arXiv:0707.1626v2 [math.FA
 J. of the European Math. Soc
, 2007
"... This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the g ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the general program of extracting effective data from primafacie ineffective proofs in the fixed point theory of such mappings. 1
A quadratic rate of asymptotic regularity for CAT(0)spaces
, 2005
"... In this paper we obtain a quadratic bound on the rate of asymptotic regularity for the KrasnoselskiMann iterations of nonexpansive mappings in CAT(0)spaces, whereas previous results guarantee only exponential bounds. The method we use is to extend to the more general setting of uniformly convex hy ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
In this paper we obtain a quadratic bound on the rate of asymptotic regularity for the KrasnoselskiMann iterations of nonexpansive mappings in CAT(0)spaces, whereas previous results guarantee only exponential bounds. The method we use is to extend to the more general setting of uniformly convex hyperbolic spaces a quantitative version of a strengthening of Groetsch’s theorem obtained by Kohlenbach using methods from mathematical logic (socalled “proof mining”).
The approximate fixed point property in product spaces, Nonlinear Analysis 66
, 2007
"... spaces ..."
Nonexpansive iterations in uniformly convex
, 810
"... We propose the class of uniformly convex Whyperbolic spaces with monotone modulus of uniform convexity (UCWhyperbolic spaces for short) as an appropriate setting for the study of nonexpansive iterations. UCWhyperbolic spaces are a natural generalization both of uniformly convex normed spaces and ..."
Abstract
 Add to MetaCart
We propose the class of uniformly convex Whyperbolic spaces with monotone modulus of uniform convexity (UCWhyperbolic spaces for short) as an appropriate setting for the study of nonexpansive iterations. UCWhyperbolic spaces are a natural generalization both of uniformly convex normed spaces and CAT(0)spaces. Furthermore, we apply proof mining techniques to get effective rates of asymptotic regularity for Ishikawa iterations of nonexpansive selfmappings of closed convex subsets in UCWhyperbolic spaces. These effective results are new even for uniformly convex Banach spaces. 1
unknown title
"... This paper provides an effective uniform rate of metastability (in the sense of Tao) on the strong convergence of Halpern iterations of nonexpansive mappings in CAT(0) spaces. The extraction of this rate from an ineffective proof due to Saejung is an instance of the general proof mining program whic ..."
Abstract
 Add to MetaCart
This paper provides an effective uniform rate of metastability (in the sense of Tao) on the strong convergence of Halpern iterations of nonexpansive mappings in CAT(0) spaces. The extraction of this rate from an ineffective proof due to Saejung is an instance of the general proof mining program which uses tools from mathematical logic to uncover hidden computational content from proofs. This methodology is applied here for the first time to a proof that uses Banach limits and hence makes a substantial reference to the axiom of choice.