Results 1  10
of
21
Algorithms for Constraint Satisfaction Problems: A Survey
 AI MAGAZINE
, 1992
"... A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic ..."
Abstract

Cited by 372 (0 self)
 Add to MetaCart
A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic experiments, and the satisfiability problem. A number of different approaches have been developed for solving these problems. Some of them use constraint propagation to simplify the original problem. Others use backtracking to directly search for possible solutions. Some are a combination of these two techniques. This paper presents a brief overview of many of these approaches in a tutorial fashion.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 127 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Exploiting the deep structure of constraint problems
 Artificial Intelligence
, 1994
"... We introduce a technique for analyzing the behavior of sophisticated A.I. search programs working on realistic, largescale problems. This approach allows us to predict where, in a space of problem instances, the hardest problems are to be found and where the fluctuations in difficulty are greatest. ..."
Abstract

Cited by 73 (8 self)
 Add to MetaCart
We introduce a technique for analyzing the behavior of sophisticated A.I. search programs working on realistic, largescale problems. This approach allows us to predict where, in a space of problem instances, the hardest problems are to be found and where the fluctuations in difficulty are greatest. Our key insight is to shift emphasis from modelling sophisticated algorithms directly to modelling a search space that captures their principal effects. We compare our model’s predictions with actual data on real problems obtained independently and show that the agreement is quite good. By systematically relaxing our underlying modelling assumptions we identify their relative contribution to the remaining error and then remedy it. We also discuss further applications of our model and suggest how this type of analysis can be generalized to other kinds of A.I. problems. Chapter 1
The Complexity of Global Constraints
, 2004
"... We study the computational complexity of reasoning with global constraints. We show that reasoning with such constraints is intractable in general. We then demonstrate how the same tools of computational complexity can be used in the design and analysis of specific global constraints. In particular ..."
Abstract

Cited by 67 (26 self)
 Add to MetaCart
We study the computational complexity of reasoning with global constraints. We show that reasoning with such constraints is intractable in general. We then demonstrate how the same tools of computational complexity can be used in the design and analysis of specific global constraints. In particular, we illustrate how computational complexity can be used to determine when a lesser level of local consistency should be enforced, when decomposing constraints will lose pruning, and when combining constraints is tractable. We also show how the same tools can be used to study symmetry breaking, metaconstraints like the cardinality constraint, and learning nogoods.
MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems
 In Proceedings of the Second International Conference on Principles and Practice of Constraint Programming
, 1996
"... . In the last twenty years, many algorithms and heuristics were developed to find solutions in constraint networks. Their number increased to such an extent that it quickly became necessary to compare their performances in order to propose a small number of "good" methods. These comparisons often le ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
. In the last twenty years, many algorithms and heuristics were developed to find solutions in constraint networks. Their number increased to such an extent that it quickly became necessary to compare their performances in order to propose a small number of "good" methods. These comparisons often led us to consider FC or FCCBJ associated with a "minimum domain" variable ordering heuristic as the best techniques to solve a wide variety of constraint networks. In this paper, we first try to convince once and for all the CSP community that MAC is not only more efficient than FC to solve large practical problems, but it is also really more efficient than FC on hard and large random problems. Afterwards, we introduce an original and efficient way to combine variable ordering heuristics. Finally, we conjecture that when a good variable ordering heuristic is used, CBJ becomes an expensive gadget which almost always slows down the search, even if it saves a few constraint checks. 1 Introducti...
Spike: Intelligent scheduling of hubble space telescope observations
 Intelligent Scheduling
, 1994
"... ..."
Intelligent Backtracking Techniques for Job Shop Scheduling
 In Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning
, 1992
"... This paper studies a version of the job shop scheduling problem in which some operations have to be scheduled within nonrelaxable time windows (i.e. earliest/latest possible start time windows). This problem is a wellknown NPcomplete Constraint Satisfaction Problem (CSP). A popular method for solv ..."
Abstract

Cited by 33 (4 self)
 Add to MetaCart
This paper studies a version of the job shop scheduling problem in which some operations have to be scheduled within nonrelaxable time windows (i.e. earliest/latest possible start time windows). This problem is a wellknown NPcomplete Constraint Satisfaction Problem (CSP). A popular method for solving these types of problems consists in using depthfirst backtrack search. Our earlier work focused on developing efficient consistency enforcing techniques and efficient variable /value ordering heuristics to improve the efficiency of this procedure. In this paper, we combine these techniques with new lookback schemes that help the search procedure recover from socalled deadend search states (i.e. partial solutions that cannot be completed without violating some constraints). More specifically, we successively describe three intelligent backtracking schemes: Dynamic Consistency Enforcement dynamically enforces higher levels of consistency in selected critical subproblems, Learning From Fa...
Satisfiability Solvers
, 2008
"... The past few years have seen an enormous progress in the performance of Boolean satisfiability (SAT) solvers. Despite the worstcase exponential run time of all known algorithms, satisfiability solvers are increasingly leaving their mark as a generalpurpose tool in areas as diverse as software and h ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
The past few years have seen an enormous progress in the performance of Boolean satisfiability (SAT) solvers. Despite the worstcase exponential run time of all known algorithms, satisfiability solvers are increasingly leaving their mark as a generalpurpose tool in areas as diverse as software and hardware verification [29–31, 228], automatic test pattern generation [138, 221], planning [129, 197], scheduling [103], and even challenging problems from algebra [238]. Annual SAT competitions have led to the development of dozens of clever implementations of such solvers [e.g. 13,
Dynamic searchspace pruning techniques in path sensitization
 in Design Automation Conf
, 1994
"... Abstract — A powerful combinational path sensitization engine is required for the efficient implementation of tools for test pattern generation, timing analysis, and delay fault testing. Path sensitization can be posed as a search, in the ndimensional Boolean space, for a consistent assignment of l ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
Abstract — A powerful combinational path sensitization engine is required for the efficient implementation of tools for test pattern generation, timing analysis, and delay fault testing. Path sensitization can be posed as a search, in the ndimensional Boolean space, for a consistent assignment of logic values to the circuit nodes which also satisfies a given condition. In this paper we propose and demonstrate the effectiveness of several new techniques for searchspace pruning for test pattern generation. In particular, we present lineartime algorithms for dynamically identifying unique sensitization points and for dynamically maintaining reduced head line sets. In addition, we present two powerful mechanisms that drastically reduce the number of backtracks: failuredriven assertions and dependencydirected backtracking. Both mechanisms can be viewed as a form of learning while searching and have analogs in other application domains. These search pruning methods have been implemented in a generic path sensitization engine called LEAP. A test pattern generator, TGLEAP, that uses this engine was also developed. We present experimental results that compare the effectiveness of our proposed search pruning strategies to those of PODEM, FAN, and SOCRATES. In particular, we show that LEAP is very efficient in identifying undetectable faults and in generating tests for difficult faults. I.
Maintaining generalized arc consistency on adhoc nary boolean constraints
 IN ECAI06
, 2006
"... ..."