Results 1  10
of
23
Functional interpretations of feasibly constructive arithmetic
 Annals of Pure and Applied Logic
, 1993
"... i ..."
An intuitionistic theory of types
"... An earlier, not yet conclusive, attempt at formulating a theory of this kind was made by Scott 1970. Also related, although less closely, are the type and logic free theories of constructions of Kreisel 1962 and 1965 and Goodman 1970. In its first version, the present theory was based on the strongl ..."
Abstract

Cited by 66 (0 self)
 Add to MetaCart
An earlier, not yet conclusive, attempt at formulating a theory of this kind was made by Scott 1970. Also related, although less closely, are the type and logic free theories of constructions of Kreisel 1962 and 1965 and Goodman 1970. In its first version, the present theory was based on the strongly impredicative axiom that there is a type of all types whatsoever, which is at the same time a type and an object of that type. This axiom had to be abandoned, however, after it was shown to lead to a contradiction by Jean Yves Girard. I am very grateful to him for showing me his paradox. The change that it necessitated is so drastic that my theory no longer contains intuitionistic simple type theory as it originally did. Instead, its proof theoretic strength should be close to that of predicative analysis.
Predicative Recursion and Computational Complexity
, 1992
"... The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct r ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct reference to polynomials, time, or even computation. Complexity classes characterized in this way include polynomial time, the functional polytime hierarchy, the logspace decidable problems, and NC. After developing these "resource free" definitions, we apply them to redeveloping the feasible logical system of Cook and Urquhart, and show how this firstorder system relates to the secondorder system of Leivant. The connection is an interesting one since the systems were defined independently and have what appear to be very different rules for the principle of induction. Furthermore it is interesting to see, albeit in a very specific context, how to retract a second order statement, ("inducti...
Enhancing the Nuprl Proof Development System and Applying it to Computational Abstract Algebra
, 1995
"... This thesis describes substantial enhancements that were made to the software tools in the Nuprl system that are used to interactively guide the production of formal proofs. Over 20,000 lines of code were written for these tools. Also, a corpus of formal mathematics was created that consists of rou ..."
Abstract

Cited by 44 (4 self)
 Add to MetaCart
This thesis describes substantial enhancements that were made to the software tools in the Nuprl system that are used to interactively guide the production of formal proofs. Over 20,000 lines of code were written for these tools. Also, a corpus of formal mathematics was created that consists of roughly 500 definitions and 1300 theorems. Much of this material is of a foundational nature and supports all current work in Nuprl. This thesis concentrates on describing the half of this corpus that is concerned with abstract algebra and that covers topics central to the mathematics of the co...
Type Theory and Programming
, 1994
"... This paper gives an introduction to type theory, focusing on its recent use as a logical framework for proofs and programs. The first two sections give a background to type theory intended for the reader who is new to the subject. The following presents MartinLof's monomorphic type theory and an im ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
This paper gives an introduction to type theory, focusing on its recent use as a logical framework for proofs and programs. The first two sections give a background to type theory intended for the reader who is new to the subject. The following presents MartinLof's monomorphic type theory and an implementation, ALF, of this theory. Finally, a few small tutorial examples in ALF are given.
New Effective Moduli of Uniqueness and Uniform aPriori Estimates for Constants of Strong Unicity by Logical Analysis of Known Proofs in Best Approximation Theory
, 1993
"... Let U and V be complete separable metric spaces, Vu compact in V and G : U IR a continuous function. For a large class of (usually nonconstructive) proofs of uniqueness theorems Vu G(u, v1 ) = inf G(u, v) = G(u, v2) v1 = v2 one can extract an e#ective modulus of uniqueness # by ..."
Abstract

Cited by 16 (12 self)
 Add to MetaCart
Let U and V be complete separable metric spaces, Vu compact in V and G : U IR a continuous function. For a large class of (usually nonconstructive) proofs of uniqueness theorems Vu G(u, v1 ) = inf G(u, v) = G(u, v2) v1 = v2 one can extract an e#ective modulus of uniqueness # by logical analysis, i.e.
A Pointfree approach to Constructive Analysis in Type Theory
, 1997
"... The first paper in this thesis presents a machine checked formalisation, in MartinLöf's type theory, of pointfree topology with applications to domain theory. In the other papers pointfree topology is used in an approach to constructive analysis. The continuum is defined as a formal space from a ba ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The first paper in this thesis presents a machine checked formalisation, in MartinLöf's type theory, of pointfree topology with applications to domain theory. In the other papers pointfree topology is used in an approach to constructive analysis. The continuum is defined as a formal space from a base of rational intervals. Then the closed rational interval [a, b] is defined as a formal space, in terms of the continuum, and the HeineBorel covering theorem is proved constructively. The basic definitions for a pointfree approach to functional analysis are given in such a way that the linear functionals from a seminormed linear space to the reals are points of a particular formal space, and in this setting the Alaoglu and the HahnBanach theorems are proved in an entirely constructive way. The proofs have been carried out in intensional MartinLöf type theory with one universe and finitary inductive definitions, and the proofs have also been mechanically checked in an implementation of that system. ...
Exact Real Arithmetic with Automatic Error Estimates in a Computer Algebra System
 Uppsala University
, 2001
"... The common approach to real arithmetic on computers is floating point arithmetic, which can produce erroneous results due to roundo# errors. An alternative is exact real arithmetic and in this project such arithmetic is implemented in the wellknown computer system Mathematica by the use of construc ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The common approach to real arithmetic on computers is floating point arithmetic, which can produce erroneous results due to roundo# errors. An alternative is exact real arithmetic and in this project such arithmetic is implemented in the wellknown computer system Mathematica by the use of constructive real numbers. All basic operations are implemented as well as the common elementary functions and limits of general convergent sequences of real numbers. Also, as an application to ordinary di#erential equations, Euler's method for solving initial value problems is implemented. Contents 1