Results 1  10
of
76
Localization for random perturbations of periodic Schrödinger operators
 RANDOM OPER. STOCHASTIC EQUATIONS
, 1996
"... We prove localization for Andersontype random perturbations of periodic Schrödinger operators on R d near the band edges. General, possibly unbounded, single site potentials of fixed sign and compact support are allowed in the random perturbation. The proof is based on the following methods: (i) ..."
Abstract

Cited by 59 (20 self)
 Add to MetaCart
We prove localization for Andersontype random perturbations of periodic Schrödinger operators on R d near the band edges. General, possibly unbounded, single site potentials of fixed sign and compact support are allowed in the random perturbation. The proof is based on the following methods: (i) A study of the band shift of periodic Schrodinger operators under linearly coupled periodic perturbations. (ii) A proof of the Wegner estimate using properties of the spatial distribution of eigenfunctions of finite box hamiltonians. (iii) An improved multiscale method together with a result of de Branges on the existence of limiting values for resolvents in the upper half plane, allowing for rather weak disorder assumptions on the random potential. (iv) Results from the theory of generalized eigenfunctions and spectral averaging. The paper aims at high accessibility in providing details for all the main steps in the proof.
An invitation to random Schrödinger operators
, 2007
"... This review is an extended version of my mini course at the États de la recherche: Opérateurs de Schrödinger aléatoires at the Université Paris 13 in June 2002, a summer school organized by Frédéric Klopp. These lecture notes try to give some of the basics of random Schrödinger operators. They are m ..."
Abstract

Cited by 51 (8 self)
 Add to MetaCart
This review is an extended version of my mini course at the États de la recherche: Opérateurs de Schrödinger aléatoires at the Université Paris 13 in June 2002, a summer school organized by Frédéric Klopp. These lecture notes try to give some of the basics of random Schrödinger operators. They are meant for nonspecialists and require only minor previous knowledge about functional analysis and probability theory. Nevertheless this survey includes complete proofs of Lifshitz tails and Anderson localization. Copyright by the author. Copying for academic purposes is permitted.
The Integrated Density Of States For Some Random Operators With Nonsign Definite Potentials
 J. Funct. Anal
, 2001
"... We study the integrated density of states of random Andersontype additive and multiplicative perturbations of deterministic background operators for which the singlesite potential does not have a fixed sign. Our main result states that, under a suitable assumption on the regularity of the random v ..."
Abstract

Cited by 44 (6 self)
 Add to MetaCart
We study the integrated density of states of random Andersontype additive and multiplicative perturbations of deterministic background operators for which the singlesite potential does not have a fixed sign. Our main result states that, under a suitable assumption on the regularity of the random variables, the integrated density of states of such random operators is locally Hölder continuous at energies below the bottom of the essential spectrum of the background operator for any nonzero disorder, and at energies in the unperturbed spectral gaps, provided the randomness is sufficiently small. The result is based on a proof of a Wegner estimate with the correct volume dependence. The proof relies upon the L function for p 1 [9], and the vector field methods of [20]. We discuss the application of this result to Schrödinger operators with random magnetic fields and to bandedge localization.
Anderson Localization for Random Schrödinger Operators with Long Range Interactions
 COMM. MATH. PHYS
, 1998
"... We prove pure point spectrum at all band edges for Schrödinger Operators with a periodic potential plus a random potential of the form V ! (x) = P q i (!)f(x \Gamma i) where f decays at infinity like jxj \Gammam for m ? 3d resp. m ? 2d depending on the regularity of f . Eigenfunctions are shown ..."
Abstract

Cited by 38 (20 self)
 Add to MetaCart
We prove pure point spectrum at all band edges for Schrödinger Operators with a periodic potential plus a random potential of the form V ! (x) = P q i (!)f(x \Gamma i) where f decays at infinity like jxj \Gammam for m ? 3d resp. m ? 2d depending on the regularity of f . Eigenfunctions are shown to decay more rapidly than every inverse polynomial. The random variables q i are supposed to be independent and identically distributed. We suppose that their distribution has a bounded density of compact support.
Moment Analysis for Localization in Random Schrödinger Operators
, 2005
"... We study localization effects of disorder on the spectral and dynamical properties of Schrödinger operators with random potentials. The new results include exponentially decaying bounds on the transition amplitude and related projection kernels, including in the mean. These are derived through the ..."
Abstract

Cited by 38 (12 self)
 Add to MetaCart
We study localization effects of disorder on the spectral and dynamical properties of Schrödinger operators with random potentials. The new results include exponentially decaying bounds on the transition amplitude and related projection kernels, including in the mean. These are derived through the analysis of fractional moments of the resolvent, which are finite due to the resonancediffusing effects of the disorder. The main difficulty which has up to now prevented an extension of this method to the continuum can be traced to the lack of a uniform bound on the LifshitzKrein spectral shift associated with the local potential terms. The difficulty is avoided here through the use of a weakL¹ estimate concerning the boundaryvalue distribution of resolvents of maximally dissipative operators, combined with standard tools of relative compactness theory.
Multiscale analysis implies strong dynamical localization
, 1999
"... We prove that a strong form of dynamical localization follows from a variable energy multiscale analysis. This abstract result is applied to a number of models for wave propagation in disordered media. ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
We prove that a strong form of dynamical localization follows from a variable energy multiscale analysis. This abstract result is applied to a number of models for wave propagation in disordered media.
FiniteVolume FractionalMoment Criteria for Anderson Localization
, 2000
"... A technically convenient signature of localization, exhibited by discrete operators with random potentials, is exponential decay of the fractional moments of the Green function within the appropriate energy ranges. Known implications include: spectral localization, absence of level repulsion, strong ..."
Abstract

Cited by 33 (4 self)
 Add to MetaCart
A technically convenient signature of localization, exhibited by discrete operators with random potentials, is exponential decay of the fractional moments of the Green function within the appropriate energy ranges. Known implications include: spectral localization, absence of level repulsion, strong form of dynamical localization, and a related condition which plays a significant role in the quantization of the Hall conductance in twodimensional Fermi gases. We present a family of finitevolume criteria which, under some mild restrictions on the distribution of the potential, cover the regime where the fractional moment decay condition holds. The constructive criteria permit to establish this condition at spectral band edges, provided there are sufficient `Lifshitz tail estimates' on the density of states. They are also used here to conclude that the fractional moment condition, and thus the other manifestations of localization, are valid throughout the regime covered by the "multisca...
An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators, eprint arXiv:mathph/0605029v2
"... et Institut Universitaire de France We prove that the integrated density of states (IDS) of random Schrödinger operators with Andersontype potentials on L 2 (R d), for d ≥ 1, is locally Hölder continuous at all energies with the same Hölder exponent 0 < α ≤ 1 as the conditional probability measure ..."
Abstract

Cited by 32 (9 self)
 Add to MetaCart
et Institut Universitaire de France We prove that the integrated density of states (IDS) of random Schrödinger operators with Andersontype potentials on L 2 (R d), for d ≥ 1, is locally Hölder continuous at all energies with the same Hölder exponent 0 < α ≤ 1 as the conditional probability measure for the singlesite random variable. As a special case, we prove that if the probability distribution is absolutely continuous with respect to Lebesgue measure with a bounded density, then the IDS is Lipschitz continuous at all energies. The singlesite potential u ∈ L ∞ 0 (R d) must be nonnegative and compactlysupported. The unperturbed Hamiltonian must be periodic and satisfy a unique continuation principle. We also prove analogous continuity results for the IDS of random Andersontype perturbations of the Landau Hamiltonian in twodimensions. All of these results follow from a new Wegner estimate for local random Hamiltonians with rather general probability measures.
Hölder Continuity Of The Integrated Density Of States For Some Random Operators At All Energies
, 2002
"... We prove that the integrated density of states of random Schrödinger operators with Andersontype potentials on L ), for d ≥ 1, is locally Hölder continuous at all energies. The singlesite potential u must be nonnegative and compactly supported, and the distribution of the random variable must ..."
Abstract

Cited by 31 (8 self)
 Add to MetaCart
We prove that the integrated density of states of random Schrödinger operators with Andersontype potentials on L ), for d ≥ 1, is locally Hölder continuous at all energies. The singlesite potential u must be nonnegative and compactly supported, and the distribution of the random variable must be absolutely continuous with a bounded, compactly supported density. We also prove this result for random Andersontype perturbations of the Landau Hamiltonian in twodimensions under a rational flux condition.
The Wegner Estimate And The Integrated Density Of States For Some Random Operators
, 2001
"... The integrated density of states (IDS) for random operators is an important function describing many physical characteristics of a random system. Properties of the IDS are derived from the Wegner estimate that describes the influence of finitevolume perturbations on a background system. In this pap ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
The integrated density of states (IDS) for random operators is an important function describing many physical characteristics of a random system. Properties of the IDS are derived from the Wegner estimate that describes the influence of finitevolume perturbations on a background system. In this paper, we present a simple proof of the Wegner estimate applicable to a wide variety of random perturbations of deterministic background operators. The proof yields the correct volume dependence of the upper bound. This implies the local Hölder continuity of the integrated density of states at energies in the unperturbed spectral gap. The proof depends on the L  theory of the spectral shift function (SSF), for p 1, applicable to pairs of...