Results 1  10
of
134
LIBSVM: a Library for Support Vector Machines
, 2001
"... LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1 ..."
Abstract

Cited by 3412 (62 self)
 Add to MetaCart
LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1
A ReExamination of Text Categorization Methods
, 1999
"... This paper reports a controlled study with statistical significance tests on five text categorization methods: the Support Vector Machines (SVM), a kNearest Neighbor (kNN) classifier, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a NaiveBayes (NB) classifier. We f ..."
Abstract

Cited by 634 (19 self)
 Add to MetaCart
This paper reports a controlled study with statistical significance tests on five text categorization methods: the Support Vector Machines (SVM), a kNearest Neighbor (kNN) classifier, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a NaiveBayes (NB) classifier. We focus on the robustness of these methods in dealing with a skewed category distribution, and their performance as function of the trainingset category frequency. Our results show that SVM, kNN and LLSF significantly outperform NNet and NB when the number of positive training instances per category are small (less than ten), and that all the methods perform comparably when the categories are sufficiently common (over 300 instances).
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 465 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large learning tasks with many training examples, offtheshelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SV M light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents algorithmic and computational results developed for SV M light V2.0, which make largescale SVM training more practical. The results give guidelines for the application of SVMs to large domains.
An introduction to kernelbased learning algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract

Cited by 373 (48 self)
 Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
An Improved Training Algorithm for Support Vector Machines
, 1997
"... We investigate the problem of training a Support Vector Machine (SVM) [1, 2, 7] on a very large date base (e.g. 50,000 data points) in the case in which the number of support vectors is also very large (e.g. 40,000). Training a SVM is equivalent to solving a linearly constrained quadratic programmin ..."
Abstract

Cited by 250 (0 self)
 Add to MetaCart
We investigate the problem of training a Support Vector Machine (SVM) [1, 2, 7] on a very large date base (e.g. 50,000 data points) in the case in which the number of support vectors is also very large (e.g. 40,000). Training a SVM is equivalent to solving a linearly constrained quadratic programming (QP) problem in a number of variables equal to the number of data points. This optimization problem is known to be challenging when the number of data points exceeds few thousands. In previous work, done by us as well as by other researchers, the strategy used to solve the large scale QP problem takes advantage of the fact that the expected number of support vectors is small (! 3; 000). Therefore, the existing algorithms cannot deal with more than a few thousand support vectors. In this paper we present a decomposition algorithm that is guaranteed to solve the QP problem and that does not make assumptions on the expected number of support vectors. In order to present the feasibility of our...
Pedestrian Detection Using Wavelet Templates
 in Computer Vision and Pattern Recognition
, 1997
"... This paper presents a trainable object detection architecture that is applied to detecting people in static images of cluttered scenes. This problem poses several challenges. People are highly nonrigid objects with a high degree of variability in size, shape, color, and texture. Unlike previous app ..."
Abstract

Cited by 225 (23 self)
 Add to MetaCart
This paper presents a trainable object detection architecture that is applied to detecting people in static images of cluttered scenes. This problem poses several challenges. People are highly nonrigid objects with a high degree of variability in size, shape, color, and texture. Unlike previous approaches, this system learns from examples and does not rely on any a priori (handcrafted) models or on motion. The detection technique is based on the novel idea of the wavelet template that defines the shape of an object in terms of a subset of the wavelet coefficients of the image. It is invariant to changes in color and texture and can be used to robustly define a rich and complex class of objects such as people. We show how the invariant properties and computational efficiency of the wavelet template make it an effective tool for object detection. 1 Introduction The problem of object detection has seen a high degree of interest over the years. The fundamental problem is how to characte...
In defense of onevsall classification
 Journal of Machine Learning Research
, 2004
"... Editor: John ShaweTaylor We consider the problem of multiclass classification. Our main thesis is that a simple “onevsall ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are welltuned regularized classifiers such as support vector machines. This the ..."
Abstract

Cited by 202 (0 self)
 Add to MetaCart
Editor: John ShaweTaylor We consider the problem of multiclass classification. Our main thesis is that a simple “onevsall ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are welltuned regularized classifiers such as support vector machines. This thesis is interesting in that it disagrees with a large body of recent published work on multiclass classification. We support our position by means of a critical review of the existing literature, a substantial collection of carefully controlled experimental work, and theoretical arguments.
Semisupervised support vector machines
 Advances in Neural Information Processing Systems
, 1998
"... We introduce a semisupervised support vector machine (S 3 VM) method. Given a training set of labeled data and a working set of unlabeled data, S 3 VM constructs a support vector machine using both the training and working sets. We use S 3 VM to solve the transduction problem using overall risk min ..."
Abstract

Cited by 173 (7 self)
 Add to MetaCart
We introduce a semisupervised support vector machine (S 3 VM) method. Given a training set of labeled data and a working set of unlabeled data, S 3 VM constructs a support vector machine using both the training and working sets. We use S 3 VM to solve the transduction problem using overall risk minimization (ORM) posed by Vapnik. The transduction problem is to estimate the value of a classification function at the given points in the working set. This contrasts with the standard inductive learning problem of estimating the classification function at all possible values and then using the fixed function to deduce the classes of the working set data. We propose a general S 3 VM model that minimizes both the misclassification error and the function capacity based on all the available data. We show how the S 3 VM model for 1norm linear support vector machines can be converted to a mixedinteger program and then solved exactly using integer programming. Results of S 3 VM and the standard 1norm support vector machine approach are compared on eleven data sets. Our computational results support the statistical learning theory results showing that incorporating working data improves generalization when insufficient training information is available. In every case, S 3 VM either improved or showed no significant difference in generalization compared to the traditional approach.
Training a support vector machine in the primal
 Neural Computation
, 2007
"... Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and nonlinear SVMs, and that there is no reason for ignoring this possibilty. On the cont ..."
Abstract

Cited by 91 (5 self)
 Add to MetaCart
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and nonlinear SVMs, and that there is no reason for ignoring this possibilty. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.
Everything Old Is New Again: A Fresh Look at Historical Approaches
 in Machine Learning. PhD thesis, MIT
, 2002
"... 2 Everything Old Is New Again: A Fresh Look at Historical ..."
Abstract

Cited by 88 (6 self)
 Add to MetaCart
2 Everything Old Is New Again: A Fresh Look at Historical