Results 1  10
of
82
Shape modeling with front propagation: A level set approach
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods ..."
Abstract

Cited by 631 (17 self)
 Add to MetaCart
Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods and overcomes some of their limitations. Our techniques can be applied to model arbitrarily complex shapes, which include shapes with significant protrusions, and to situations where no a priori assumption about the object’s topology is made. A single instance of our model, when presented with an image having more than one object of interest, has the ability to split freely to represent each object. This method is based on the ideas developed by Osher and Sethian to model propagating solidhiquid interfaces with curvaturedependent speeds. The interface (front) is a closed, nonintersecting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. It is moved by solving a “HamiltonJacob? ’ type equation written for a function in which the interface is a particular level set. A speed term synthesizpd from the image is used to stop the interface in the vicinity of object boundaries. The resulting equation of motion is solved by employing entropysatisfying upwind finite difference schemes. We present a variety of ways of computing evolving front, including narrow bands, reinitializations, and different stopping criteria. The efficacy of the scheme is demonstrated with numerical experiments on some synthesized images and some low contrast medical images. Index Terms Shape modeling, shape recovery, interface motion, level sets, hyperbolic conservation laws, HamiltonJacobi
A Fast Marching Level Set Method for Monotonically Advancing Fronts
 Proc. Nat. Acad. Sci
, 1995
"... We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial dierential equa ..."
Abstract

Cited by 426 (21 self)
 Add to MetaCart
We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial dierential equation for a propagating level set function, and use techniques borrowed from hyperbolic conservation laws. Topological changes, corner and cusp development, and accurate determination of geometric properties such as curvature and normal direction are naturally obtained in this setting. In this paper, we describe a particular case of such methods for interfaces whose speed depends only on local position. The technique works by coupling work on entropy conditions for interface motion, the theory of viscosity solutions for HamiltonJacobi equations and fast adaptive narrow band level set methods. The technique is applicable to a variety of problems, including shapefromshading problems, lithog...
A Fast Level Set Method for Propagating Interfaces
 Journal of Computational Physics
, 1994
"... A method is introduced to decrease the computational labor of the standard level set method for propagating interfaces. The fast approach uses only points close to the curve at every time step. We describe this new algorithm and compare its efficiency and accuracy with the standard level set approac ..."
Abstract

Cited by 327 (27 self)
 Add to MetaCart
A method is introduced to decrease the computational labor of the standard level set method for propagating interfaces. The fast approach uses only points close to the curve at every time step. We describe this new algorithm and compare its efficiency and accuracy with the standard level set approach. 1 A Fast Level Set Implementation The level set technique was introduced in [9] to track moving interfaces in a wide variety of problems. It relies on the relation between propagating interfaces and propagating shocks. The equation for a front propagating with curvature dependent speed is linked to a viscous hyperbolic conservation law for the propagating gradients of the fronts. The central idea is to follow the evolution of a function OE whose zerolevel set always corresponds to the position of the propagating interface. The motion for this evolving function OE is determined from a partial differential equation in one higher dimension which permits cusps, sharp corners, and changes i...
Computing Geodesic Paths on Manifolds
 Proc. Natl. Acad. Sci. USA
, 1998
"... The Fast Marching Method [8] is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity. A ..."
Abstract

Cited by 218 (26 self)
 Add to MetaCart
The Fast Marching Method [8] is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity. As an application, we provide an optimal time algorithm for computing the geodesic distances and thereby extracting shortest paths on triangulated manifolds. 1 Introduction Sethian`s Fast Marching Method [8], is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M ) steps, where M is the total number of grid points in the domain. The technique hinges on producing numerically consistent approximations to the operators in the Eikonal equation that select the correct viscosity solution; this is done through the use of upwind nite dierence operators. The structure of this upwinding is then used to systematically construct the solution to the Eik...
Gradient flows and geometric active contour models
 in Proc. of the 5th International Conference on Computer Vision
, 1995
"... In this paper, we analyze the geometric active contour models discussed in [6, 181 from a curve evolution point of view and propose some modifications based on gradient flows relative to certain new featurebased Riemannian metrics. This leads to a novel snake paradigm in which the feature of interes ..."
Abstract

Cited by 199 (16 self)
 Add to MetaCart
In this paper, we analyze the geometric active contour models discussed in [6, 181 from a curve evolution point of view and propose some modifications based on gradient flows relative to certain new featurebased Riemannian metrics. This leads to a novel snake paradigm in which the feature of interest may be considered to lie at the bottom of a potential well. Thus the snake is attracted very naturally and eficiently to the desired feature. Moreover, we consider some 30 active surface models based on these ideas. 1
The Fast Construction of Extension Velocities in Level Set Methods
 Journal of Computational Physics
, 1997
"... Level set techniques are numerical techniques for tracking the evolution of interfaces. They rely on two central embeddings; rst the embedding of the interface as the zero level set of a higher dimensional function, and second, the embedding (or extension) of the interface's velocity to this higher ..."
Abstract

Cited by 159 (11 self)
 Add to MetaCart
Level set techniques are numerical techniques for tracking the evolution of interfaces. They rely on two central embeddings; rst the embedding of the interface as the zero level set of a higher dimensional function, and second, the embedding (or extension) of the interface's velocity to this higher dimensional level set function. This paper applies Sethian's Fast Marching Method, which is a very fast technique for solving the Eikonal and related equations, to the problem of building fast and appropriate extension velocities for the neighboring level sets. Our choice and construction of extension velocities serves several purposes. First, it provides a way of building velocities for neighboring level sets in the cases where the velocity is de ned only on the front itself. Second, it provides a subgrid resolution in some cases not present in the standard level set approach. Third, it provides a way to update an interface according to a given velocity eld prescribed on the front in suc...
Fast Marching Methods
 SIAM Review
, 1998
"... Fast Marching Methods are numerical schemes for computing solutions to the nonlinear Eikonal equation and related static HamiltonJacobi equations. Based on entropysatisfying upwind schemes and fast sorting techniques, they yield consistent, accurate, and highly efficient algorithms. They are opti ..."
Abstract

Cited by 145 (4 self)
 Add to MetaCart
Fast Marching Methods are numerical schemes for computing solutions to the nonlinear Eikonal equation and related static HamiltonJacobi equations. Based on entropysatisfying upwind schemes and fast sorting techniques, they yield consistent, accurate, and highly efficient algorithms. They are optimal in the sense that the computational complexity of the algorithms is O(N log N ), where N is the total number of points in the domain. The schemes are of use in a variety of applications, including problems in shape offsetting, computing distances from complex curves and surfaces, shapefromshading, photolithographic development, computing rst arrivals in seismic travel times, construction of shortest geodesics on surfaces, optimal path planning around obstacles, and visibility and reection calculations. In this paper, we review the development of these techniques, including the theoretical and numerical underpinnings, provide details of the computational schemes including higher order versions,...
A Hybrid Particle Level Set Method for Improved Interface Capturing
 J. Comput. Phys
, 2002
"... In this paper, we propose a new numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are underresolved. This is ofte ..."
Abstract

Cited by 141 (22 self)
 Add to MetaCart
In this paper, we propose a new numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are underresolved. This is often the case for flows undergoing stretching and tearing. The overall method maintains a smooth geometrical description of the interface and the implementation simplicity characteristic of the level set method. Our method compares favorably with volume of fluid methods in the conservation of mass and purely Lagrangian schemes for interface resolution. The method is presented in three spatial dimensions.
Conformal Curvature Flows: From Phase Transitions to Active Vision
, 1995
"... In this paper, we analyze geometric active contour models from a curve evolution point of view and propose some modifications based on gradient flows relative to certain new featurebased Riemannian metrics. This leads to a novel edgedetection paradigm in which the feature of interest may be consid ..."
Abstract

Cited by 117 (30 self)
 Add to MetaCart
In this paper, we analyze geometric active contour models from a curve evolution point of view and propose some modifications based on gradient flows relative to certain new featurebased Riemannian metrics. This leads to a novel edgedetection paradigm in which the feature of interest may be considered to lie at the bottom of a potential well. Thus an edgeseeking curve is attracted very naturally and efficiently to the desired feature. Comparison with the AllenCahn model clarifies some of the choices made in these models, and suggests inhomogeneous models which may in return be useful in phase transitions. We also consider some 3D active surface models based on these ideas. The justification of this model rests on the careful study of the viscosity solutions of evolution equations derived from a levelset approach. Key words: Active vision, antiphase boundary, visual tracking, edge detection, segmentation, gradient flows, Riemannian metrics, viscosity solutions, geometric heat equ...
Level set approach to mean curvature flow in arbitrary codimension
 J. Differential Geom
, 1996
"... codimension ..."