Results 1 
2 of
2
Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem
 Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35, 177194
, 2004
"... Abstract. Kochen and Specker’s theorem can be seen as a consequence of Gleason’s theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason’s th ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Abstract. Kochen and Specker’s theorem can be seen as a consequence of Gleason’s theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason’s theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated. 1. Gleason’s Theorem and Logical Compactness Kochen and Specker’s (1967) theorem (KS) puts a severe constraint on possible hiddenvariable interpretations of quantum mechanics. Often it is considered an improvement on a similar argument derived from Gleason (1957) theorem (see, for example, Held. 2000). This is true in the sense that KS provide an explicit construction of a finite set of rays on which no twovalued homomorphism exists. However, the fact that there is such a finite set follows from Gleason’s theorem using a simple logical compactness argument (Pitowsky 1998, a similar point is made in Bell 1996). The existence of finite sets of rays with other interesting features