Results 1  10
of
76
Classical Negation in Logic Programs and Disjunctive Databases
 New Generation Computing
, 1991
"... An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic progra ..."
Abstract

Cited by 853 (75 self)
 Add to MetaCart
An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negationasfailure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available. Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter. 1 Introduction An important limitation of traditional logic programming as a knowledge representation tool, in comp...
Abduction in Logic Programming
"... Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over th ..."
Abstract

Cited by 538 (74 self)
 Add to MetaCart
Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over the last ten years and to take a critical view of these developments from several perspectives: logical, epistemological, computational and suitability to application. The paper attempts to expose some of the challenges and prospects for the further development of the field.
Representing Action and Change by Logic Programs
 Journal of Logic Programming
, 1993
"... We represent properties of actions in a logic programming language that uses both classical negation and negation as failure. The method is applicable to temporal projection problems with incomplete information, as well as to reasoning about the past. It is proved to be sound relative to a semantics ..."
Abstract

Cited by 389 (28 self)
 Add to MetaCart
We represent properties of actions in a logic programming language that uses both classical negation and negation as failure. The method is applicable to temporal projection problems with incomplete information, as well as to reasoning about the past. It is proved to be sound relative to a semantics of action based on states and transition functions. 1 Introduction This paper extends the work of Eshghi and Kowalski [6], Evans [7] and Apt and Bezem [1] on representing properties of actions in logic programming languages with negation as failure. Our goal is to overcome some of the limitations of the earlier work. The existing formalizations of action in logic programming are adequate for only the simplest kind of temporal reasoning"temporal projection." In a temporal projection problem, we are given a description of the initial state of the world, and use properties of actions to determine what the world will look like after a series of actions is performed. Moreover, the existing ...
Logic Programming and Negation: A Survey
 JOURNAL OF LOGIC PROGRAMMING
, 1994
"... We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them. ..."
Abstract

Cited by 245 (8 self)
 Add to MetaCart
We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them.
Logic Programming and Knowledge Representation
 Journal of Logic Programming
, 1994
"... In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and sh ..."
Abstract

Cited by 224 (21 self)
 Add to MetaCart
In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and show how each of the added features extends the representational power of the language.
WellFounded Semantics Coincides with ThreeValued Stable Semantics
 Fundamenta Informaticae
, 1990
"... We introduce 3valued stable models which are a natural generalization of standard (2valued) stable models. We show that every logic program P has at least one 3valued stable model and that the wellfounded model of any program P [VGRS90] coincides with the smallest 3valued stable model of P. We c ..."
Abstract

Cited by 139 (17 self)
 Add to MetaCart
We introduce 3valued stable models which are a natural generalization of standard (2valued) stable models. We show that every logic program P has at least one 3valued stable model and that the wellfounded model of any program P [VGRS90] coincides with the smallest 3valued stable model of P. We conclude that the wellfounded semantics of an arbitrary logic program coincides with the 3valued stable model semantics. The 3valued stable semantics is closely related to nonmonotonic formalisms in AI. Namely, every program P can be translated into a suitable autoepistemic (resp. default) theory P so that the 3valued stable semantics of P coincides with the (3valued) autoepistemic (resp. default) semantics of P . Similar results hold for circumscription and CWA. Moreover, it can be shown that the 3valued stable semantics has a natural extension to the class of all disjunctive logic programs and deductive databases. The author acknowledges support from the National Science Foundat...
Well Founded Semantics for Logic Programs with Explicit Negation
 EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE
, 1992
"... The aim of this paper is to provide a semantics for general logic programs (with negation by default) extended with explicit negation, subsuming well founded semantics [22]. The Well Founded semantics for extended logic programs (WFSX) is expressible by a default theory semantics we have devised [11 ..."
Abstract

Cited by 122 (54 self)
 Add to MetaCart
The aim of this paper is to provide a semantics for general logic programs (with negation by default) extended with explicit negation, subsuming well founded semantics [22]. The Well Founded semantics for extended logic programs (WFSX) is expressible by a default theory semantics we have devised [11]. This relationship improves the crossfertilization between logic programs and default theories, since we generalize previous results concerning their relationship [3, 4, 7, 1, 2], and there is an increasing use of logic programming with explicit negation for nonmonotonic reasoning [7, 15, 16, 13, 23]. It also clarifies the meaning of logic programs combining both explicit negation and negation by default. In particular, it shows that explicit negation corresponds exactly to classical negation in the default theory, and elucidates the use of rules in logic programs. Like defaults, rules are unidirectional, so their contrapositives are not implicit; the rule connective, /, is not materi...
A Survey of Research on Deductive Database Systems
 JOURNAL OF LOGIC PROGRAMMING
, 1993
"... The area of deductive databases has matured in recent years, and it now seems appropriate to re ect upon what has been achieved and what the future holds. In this paper, we provide an overview of the area and briefly describe a number of projects that have led to implemented systems. ..."
Abstract

Cited by 100 (6 self)
 Add to MetaCart
The area of deductive databases has matured in recent years, and it now seems appropriate to re ect upon what has been achieved and what the future holds. In this paper, we provide an overview of the area and briefly describe a number of projects that have led to implemented systems.
Unfolding Partiality and Disjunctions in Stable Model Semantics
 Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2000), April 1215
, 2000
"... The paper studies an implementation methodology for partial and disjunctive stable models where partiality and disjunctions are unfolded from a logic program so that an implementation of stable models for normal (disjunctionfree) programs can be used as the core inference engine. The unfolding is d ..."
Abstract

Cited by 82 (17 self)
 Add to MetaCart
The paper studies an implementation methodology for partial and disjunctive stable models where partiality and disjunctions are unfolded from a logic program so that an implementation of stable models for normal (disjunctionfree) programs can be used as the core inference engine. The unfolding is done in two separate steps. Firstly, it is shown that partial stable models can be captured by total stable models using a simple linear and modular program transformation. Hence, reasoning tasks concerning partial models can be solved using an implementation of total models. Disjunctive partial stable models have been lacking implementations which now become available as the translation handles also the disjunctive case. Secondly, it is shown how total stable models of disjunctive programs can be determined by computing stable models for normal programs. Hence, an implementation of stable models of normal programs can be used as a core engine for implementing disjunctiv...