Results 11  20
of
93
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
(Show Context)
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics
, 1992
"... ..."
(Show Context)
A classification of rapidly growing Ramsey functions
 PROC. AMER. MATH. SOC
, 2003
"... Let f be a numbertheoretic function. A finite set X of natural numbers is called flarge if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding flargeness condition. We classify those functions f for which the statement PHf i ..."
Abstract

Cited by 20 (8 self)
 Add to MetaCart
(Show Context)
Let f be a numbertheoretic function. A finite set X of natural numbers is called flarge if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding flargeness condition. We classify those functions f for which the statement PHf is independent of first order (Peano) arithmetic PA.Iffis a fixed iteration of the binary length function, then PHf is independent. On the other hand PHlog ∗ is provable in PA. More precisely let fα(i):=i  H −1 α (i) where  i h denotes the htimes iterated binary length of i and H−1 α denotes the inverse function of the αth member Hα of the Hardy hierarchy. Then PHfα is independent of PA (for α ≤ ε0) iffα = ε0.
Number theory and elementary arithmetic
 Philosophia Mathematica
, 2003
"... Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show t ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
(Show Context)
Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context. 1
Is Independence an Exception?
, 1994
"... Gödel's Incompleteness Theorem asserts that any sufficiently rich, sound, and recursively axiomatizable theory is incomplete. We show that, in a quite general topological sense, incompleteness is a rather common phenomenon: With respect to any reasonable topology the set of true and unprovable ..."
Abstract

Cited by 19 (12 self)
 Add to MetaCart
Gödel's Incompleteness Theorem asserts that any sufficiently rich, sound, and recursively axiomatizable theory is incomplete. We show that, in a quite general topological sense, incompleteness is a rather common phenomenon: With respect to any reasonable topology the set of true and unprovable statements of such a theory is dense and in many cases even corare.
Partition Theorems and Computability Theory
 Bull. Symbolic Logic
, 2004
"... The computabilitytheoretic and reverse mathematical aspects of various combinatorial principles, such as König’s Lemma and Ramsey’s Theorem, have received a great deal of attention and are active areas of research. We carry on this study of effective combinatorics by analyzing various partition the ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
(Show Context)
The computabilitytheoretic and reverse mathematical aspects of various combinatorial principles, such as König’s Lemma and Ramsey’s Theorem, have received a great deal of attention and are active areas of research. We carry on this study of effective combinatorics by analyzing various partition theorems (such as Ramsey’s Theorem) with the aim of understanding the complexity of solutions to computable instances in terms of the Turing degrees and the arithmetical hierarchy. Our main focus is the study of the effective content of two partition theorems allowing infinitely many colors: the Canonical Ramsey Theorem of Erdös and Rado, and the Regressive Function Theorem of Kanamori and McAloon. Our results on the complexity of solutions rely heavily on a new, purely inductive, proof of the Canonical Ramsey Theorem. This study unearths some interesting relationships between these two partition theorems, Ramsey’s Theorem, and Konig’s Lemma, and these connections will be emphasized. We also study Ramsey degrees, i.e. those Turing degrees which are able to compute homogeneous sets for every computable 2coloring of pairs of natural numbers, in an attempt to further understand the effective content of Ramsey’s Theorem for exponent 2. We establish some new results about these degrees, and obtain as a corollary the nonexistence of a “universal ” computable 2coloring of pairs of natural numbers.
ON THE NUMBER OF STEPS IN PROOFS
, 1989
"... In this paper we prove some results about the complexity of proofs. We consider proofs in Hilbertstyle formal systems such as in [17J. Thus a proof is a sequence of formulas satisfying certain conditions. We caD view the formulas as being strings of symbols; hence the whole proof is a string too. W ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
In this paper we prove some results about the complexity of proofs. We consider proofs in Hilbertstyle formal systems such as in [17J. Thus a proof is a sequence of formulas satisfying certain conditions. We caD view the formulas as being strings of symbols; hence the whole proof is a string too. We consider the following measures of complexity of proofs: length ( = the number of symbols in the proof), depth ( = the maximal depth of a formula in the proof) and number o! steps ( = the number of formulas in the proof). For a particular formaI system and a given formula A we consider the shortest length of a proof of A, the minimal depth ofa proof of A and the minimal number of steps in a proof of A. The main results are the following: (1) a bound on the depth in terms of the number of steps: Theorem 2.2, (2) a bound on the depth in terms of the length: Theorem 2.3, (3) a bound on the length in terms of the number of steps for restricted systems: Theorem 3.1. These results are applied to obtain several corollaries. In particular we show: (1) a bound on the number of steps in a cutfree proof, (2) some speedup results, (3) bounds on the number of steps in proofs of ParisHarrington sentences. Some paper