Results 11  20
of
58
Is Independence an Exception?
, 1994
"... Gödel's Incompleteness Theorem asserts that any sufficiently rich, sound, and recursively axiomatizable theory is incomplete. We show that, in a quite general topological sense, incompleteness is a rather common phenomenon: With respect to any reasonable topology the set of true and unprovable state ..."
Abstract

Cited by 19 (13 self)
 Add to MetaCart
Gödel's Incompleteness Theorem asserts that any sufficiently rich, sound, and recursively axiomatizable theory is incomplete. We show that, in a quite general topological sense, incompleteness is a rather common phenomenon: With respect to any reasonable topology the set of true and unprovable statements of such a theory is dense and in many cases even corare.
ON THE NUMBER OF STEPS IN PROOFS
, 1989
"... In this paper we prove some results about the complexity of proofs. We consider proofs in Hilbertstyle formal systems such as in [17J. Thus a proof is a sequence of formulas satisfying certain conditions. We caD view the formulas as being strings of symbols; hence the whole proof is a string too. W ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
In this paper we prove some results about the complexity of proofs. We consider proofs in Hilbertstyle formal systems such as in [17J. Thus a proof is a sequence of formulas satisfying certain conditions. We caD view the formulas as being strings of symbols; hence the whole proof is a string too. We consider the following measures of complexity of proofs: length ( = the number of symbols in the proof), depth ( = the maximal depth of a formula in the proof) and number o! steps ( = the number of formulas in the proof). For a particular formaI system and a given formula A we consider the shortest length of a proof of A, the minimal depth ofa proof of A and the minimal number of steps in a proof of A. The main results are the following: (1) a bound on the depth in terms of the number of steps: Theorem 2.2, (2) a bound on the depth in terms of the length: Theorem 2.3, (3) a bound on the length in terms of the number of steps for restricted systems: Theorem 3.1. These results are applied to obtain several corollaries. In particular we show: (1) a bound on the number of steps in a cutfree proof, (2) some speedup results, (3) bounds on the number of steps in proofs of ParisHarrington sentences. Some paper
Number theory and elementary arithmetic
 Philosophia Mathematica
, 2003
"... Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show t ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context. 1
Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics
 University of Utrecht, Dept of Philosophy
, 1992
"... At first sight, the argument which F. P. Ramsey gave for (the infinite case of) his famous theorem from 1927, is hopelessly unconstructive. If suitably reformulated, the theorem is true intuitionistically as well as classically: we offer a proof which should convince both the classical and the intui ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
At first sight, the argument which F. P. Ramsey gave for (the infinite case of) his famous theorem from 1927, is hopelessly unconstructive. If suitably reformulated, the theorem is true intuitionistically as well as classically: we offer a proof which should convince both the classical and the intuitionistic reader. 1.
A classification of rapidly growing Ramsey functions
 PROC. AMER. MATH. SOC
, 2003
"... Let f be a numbertheoretic function. A finite set X of natural numbers is called flarge if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding flargeness condition. We classify those functions f for which the statement PHf i ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
Let f be a numbertheoretic function. A finite set X of natural numbers is called flarge if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding flargeness condition. We classify those functions f for which the statement PHf is independent of first order (Peano) arithmetic PA.Iffis a fixed iteration of the binary length function, then PHf is independent. On the other hand PHlog ∗ is provable in PA. More precisely let fα(i):=i  H −1 α (i) where  i h denotes the htimes iterated binary length of i and H−1 α denotes the inverse function of the αth member Hα of the Hardy hierarchy. Then PHfα is independent of PA (for α ≤ ε0) iffα = ε0.
Long Finite Sequences
, 2001
"... Let k be a positive integer. There is a longest finite sequence x 1 ,...,x n in k letters in which no consecutive block x i ,...,x 2i is a subsequence of any other consecutive block x j ,...,x 2j . Let n(k) be this longest length. We prove that n(1) = 3, n(2) = 11, and n(3) is incomprehensibly large ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
Let k be a positive integer. There is a longest finite sequence x 1 ,...,x n in k letters in which no consecutive block x i ,...,x 2i is a subsequence of any other consecutive block x j ,...,x 2j . Let n(k) be this longest length. We prove that n(1) = 3, n(2) = 11, and n(3) is incomprehensibly large. We give a lower bound for n(3) in terms of the familiar Ackerman hierarchy. We also give asymptotic upper and lower bounds for n(k). We view n(3) as a particularly elemental description of an incomprehensibly large integer. Related problems involving binary sequences (two letters) are also addressed. We also report on some recent computer explorations of R. Dougherty which we use to raise the lower bound for n(3). TABLE OF CONTENTS 1. Finiteness, and n(1),n(2). 2. Sequences of fixed length sequences. 3. The Main Lemma. 4. Lower bound for n(3). 5. The function n(k). 6. Related problems and computer explorations. 1. FINITENESS, AND n(1),n(2) We use Z for the set of all integers, Z + f...
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
A ModelTheoretic Approach to Ordinal Analysis
 Bulletin of Symbolic Logic
, 1997
"... . We describe a modeltheoretic approach to ordinal analysis via the finite combinatorial notion of an #large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in no ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
. We describe a modeltheoretic approach to ordinal analysis via the finite combinatorial notion of an #large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in nonstandard instances, give rise to models of the theory being analyzed. This method is applied to obtain ordinal analyses of a number of interesting subsystems of first and secondorder arithmetic. x1. Introduction. Two of proof theory's defining goals are the justification of classical theories on constructive grounds, and the extraction of constructive information from classical proofs. Since Gentzen, ordinal analysis has been a major component in these pursuits, and the assignment of recursive ordinals to theories has proven to be an illuminating way of measuring their constructive strength. The traditional approach to ordinal analysis, which uses cutelimination procedures to transfor...
ComputabilityTheoretic and ProofTheoretic Aspects of Partial and Linear Orderings
 Israel Journal of mathematics
"... Szpilrajn's Theorem states that any partial order P = hS;
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Szpilrajn's Theorem states that any partial order P = hS; <P i has a linear extension L = hS; <L i. This is a central result in the theory of partial orderings, allowing one to de ne, for instance, the dimension of a partial ordering. It is now natural to ask questions like \Does a wellpartial ordering always have a wellordered linear extension?" Variations of Szpilrajn's Theorem state, for various (but not for all) linear order types , that if P does not contain a subchain of order type , then we can choose L so that L also does not contain a subchain of order type . In particular, a wellpartial ordering always has a wellordered extension.
Is Complexity a Source of Incompleteness?
 IS COMPLEXITY A SOURCE OF INCOMPLETENESS
, 2004
"... ..."