Results

**1 - 2**of**2**### THE NATURE OF CONTEMPORARY CORE MATHEMATICS

, 2010

"... Abstract. The goal of this essay is a description of modern mathematical practice, with emphasis on differences between this and practices in the nineteenth century. I explain how and why these differences greatly increased the effectiveness of mathematical methods and enabled sweeping developments ..."

Abstract
- Add to MetaCart

Abstract. The goal of this essay is a description of modern mathematical practice, with emphasis on differences between this and practices in the nineteenth century. I explain how and why these differences greatly increased the effectiveness of mathematical methods and enabled sweeping developments in the twentieth century. A particular concern is the significance for mathematics education: elementary education remains modeled on the mathematics of the nineteenth century and before, and use of modern methodologies might give advantages similar to those seen in mathematics. This draft is about 90 % complete, and comments are welcome. 1.

### Knowledge

, 2011

"... Abstract In this paper, we present an analytic framework for investigating expert mathematical learning as the process of building a network of mathematical resources by establishing relationships between different components and properties of mathematical ideas. We then use this framework to analyz ..."

Abstract
- Add to MetaCart

Abstract In this paper, we present an analytic framework for investigating expert mathematical learning as the process of building a network of mathematical resources by establishing relationships between different components and properties of mathematical ideas. We then use this framework to analyze the reasoning of ten mathematicians and mathematics graduate students that were asked to read and make sense of an unfamiliar, but accessible, mathematical proof in the domain of geometric topology. We find that experts are more likely to refer to definitions when questioning or explaining some aspect of the focal mathematical idea and more likely to refer to specific examples or instantiations when making sense of an unknown aspect of that idea. However, in general, they employ a variety of types of mathematical resources simultaneously. Often, these combinations are used to deconstruct the mathematical idea in order to isolate, identify, and explore its subcomponents. Some common patterns in the ways experts combined these resources are presented, and we consider implications for education.