Results 1  10
of
130
Solving Systems of Polynomial Equations
 AMERICAN MATHEMATICAL SOCIETY, CBMS REGIONAL CONFERENCES SERIES, NO 97
, 2002
"... One of the most classical problems of mathematics is to solve systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely applied across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, game theory, ..."
Abstract

Cited by 221 (14 self)
 Add to MetaCart
One of the most classical problems of mathematics is to solve systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely applied across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, game theory, statistics, machine learning, control theory, and numerous other areas. The set of solutions to a system of polynomial equations is an algebraic variety, the basic object of algebraic geometry. The algorithmic study of algebraic varieties is the central theme of computational algebraic geometry. Exciting recent developments in symbolic algebra and numerical software for geometric calculations have revolutionized the field, making formerly inaccessible problems tractable, and providing fertile ground for experimentation and conjecture. The first half of this book furnishes an introduction and represents a snapshot of the state of the art regarding systems of polynomial equations. Afficionados of the wellknown text books by Cox, Little, and O’Shea will find familiar themes in the first five chapters: polynomials in one variable, Gröbner
The PATH Solver: A NonMonotone Stabilization Scheme for Mixed Complementarity Problems
 OPTIMIZATION METHODS AND SOFTWARE
, 1995
"... The Path solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem. The stabilization scheme employs a pathgeneration procedure which is used to construct a piecewiselinear path from the current point to the Newton point; a step length acceptan ..."
Abstract

Cited by 211 (40 self)
 Add to MetaCart
(Show Context)
The Path solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem. The stabilization scheme employs a pathgeneration procedure which is used to construct a piecewiselinear path from the current point to the Newton point; a step length acceptance criterion and a nonmonotone pathsearch are then used to choose the next iterate. The algorithm is shown to be globally convergent under assumptions which generalize those required to obtain similar results in the smooth case. Several implementation issues are discussed, and extensive computational results obtained from problems commonly found in the literature are given.
Engineering and economic applications of complementarity problems
 SIAM Review
, 1997
"... Abstract. This paper gives an extensive documentation of applications of finitedimensional nonlinear complementarity problems in engineering and equilibrium modeling. For most applications, we describe the problem briefly, state the defining equations of the model, and give functional expressions f ..."
Abstract

Cited by 189 (24 self)
 Add to MetaCart
(Show Context)
Abstract. This paper gives an extensive documentation of applications of finitedimensional nonlinear complementarity problems in engineering and equilibrium modeling. For most applications, we describe the problem briefly, state the defining equations of the model, and give functional expressions for the complementarity formulations. The goal of this documentation is threefold: (i) to summarize the essential applications of the nonlinear complementarity problem known to date, (ii) to provide a basis for the continued research on the nonlinear complementarity problem, and (iii) to supply a broad collection of realistic complementarity problems for use in algorithmic experimentation and other studies.
Analyzing MarketBased Resource Allocation Strategies for the Computational Grid
 International Journal of High Performance Computing Applications
, 2001
"... In this paper, we investigate Gcommerce — computational economies for controlling resource allocation in Computational Grid settings. We define hypothetical resource consumers (representing users and Gridaware applications) and resource producers (representing resource owners who “sell ” their res ..."
Abstract

Cited by 125 (3 self)
 Add to MetaCart
(Show Context)
In this paper, we investigate Gcommerce — computational economies for controlling resource allocation in Computational Grid settings. We define hypothetical resource consumers (representing users and Gridaware applications) and resource producers (representing resource owners who “sell ” their resources to the Grid). We then measure the efficiency of resource allocation under two different market conditions: commodities markets and auctions. We compare both market strategies in terms of price stability, market equilibrium, consumer efficiency, and producer efficiency. Our results indicate that commodities markets are a better choice for controlling Grid resources than previously defined auction strategies. 1
The Structure and Complexity of Nash Equilibria for a Selfish Routing Game
, 2002
"... In this work, we study the combinatorial structure and the computational complexity of Nash equilibria for a certain game that models sel sh routing over a network consisting of m parallel links. We assume a collection of n users, each employing a mixed strategy, which is a probability distribu ..."
Abstract

Cited by 122 (28 self)
 Add to MetaCart
(Show Context)
In this work, we study the combinatorial structure and the computational complexity of Nash equilibria for a certain game that models sel sh routing over a network consisting of m parallel links. We assume a collection of n users, each employing a mixed strategy, which is a probability distribution over links, to control the routing of its own assigned trac. In a Nash equilibrium, each user sel shly routes its trac on those links that minimize its expected latency cost, given the network congestion caused by the other users. The social cost of a Nash equilibrium is the expectation, over all random choices of the users, of the maximum, over all links, latency through a link.
The WALRAS algorithm: A convergent distributed implementation of general equilibrium outcomes
 Computational Economics
, 1998
"... Abstract. The WALRAS algorithm calculates competitive equilibria via a distributed tatonnementlike process, in which agents submit singlegood demand functions to marketclearing auctions. The algorithm is asynchronous and decentralized with respect to both agents and markets, making it suitable for ..."
Abstract

Cited by 112 (11 self)
 Add to MetaCart
(Show Context)
Abstract. The WALRAS algorithm calculates competitive equilibria via a distributed tatonnementlike process, in which agents submit singlegood demand functions to marketclearing auctions. The algorithm is asynchronous and decentralized with respect to both agents and markets, making it suitable for distributed implementation. We present a formal description of this algorithm, and prove that it converges under the standard assumption of gross substitutability. We relate our results to the literature on general equilibrium stability and some more recent work on decentralized algorithms. We present some experimental results as well, particularly for cases where the assumptions required to guarantee convergence do not hold. Finally, we consider some extensions and generalizations to the WALRAS algorithm.
A Semismooth Equation Approach To The Solution Of Nonlinear Complementarity Problems
, 1995
"... In this paper we present a new algorithm for the solution of nonlinear complementarity problems. The algorithm is based on a semismooth equation reformulation of the complementarity problem. We exploit the recent extension of Newton's method to semismooth systems of equations and the fact that ..."
Abstract

Cited by 105 (12 self)
 Add to MetaCart
In this paper we present a new algorithm for the solution of nonlinear complementarity problems. The algorithm is based on a semismooth equation reformulation of the complementarity problem. We exploit the recent extension of Newton's method to semismooth systems of equations and the fact that the natural merit function associated to the equation reformulation is continuously differentiable to develop an algorithm whose global and quadratic convergence properties can be established under very mild assumptions. Other interesting features of the new algorithm are an extreme simplicity along with a low computational burden per iteration. We include numerical tests which show the viability of the approach.
MCPLIB: A Collection of Nonlinear Mixed Complementarity Problems
 Optimization Methods and Software
, 1994
"... The origins and some motivational details of a collection of nonlinear mixed complementarity problems are given. This collection serves two purposes. Firstly, it gives a uniform basis for testing currently available and new algorithms for mixed complementarity problems. Function and Jacobian evaluat ..."
Abstract

Cited by 88 (31 self)
 Add to MetaCart
(Show Context)
The origins and some motivational details of a collection of nonlinear mixed complementarity problems are given. This collection serves two purposes. Firstly, it gives a uniform basis for testing currently available and new algorithms for mixed complementarity problems. Function and Jacobian evaluations for the resulting problems are provided via a GAMS interface, making thorough testing of algorithms on practical complementarity problems possible. Secondly, it gives examples of how to formulate many popular problem formats as mixed complementarity problems and how to describe the resulting problems in GAMS format. We demonstrate the ease and power of formulating practical models in the MCP format. Given these examples, it is hoped that this collection will grow to include many problems that test complementarity algorithms more fully. The collection is available by anonymous ftp. Computational results using the PATH solver covering all of these problems are described. 1 Introduction R...
On the Complexity of Nash Equilibria and Other Fixed Points (Extended Abstract)
 IN PROC. FOCS
, 2007
"... We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, Γ, with 3 ..."
Abstract

Cited by 68 (8 self)
 Add to MetaCart
We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, Γ, with 3 or more players, and given ɛ> 0, compute an approximation within ɛ of some (actual) Nash equilibrium. We show that approximation of an actual Nash Equilibrium, even to within any nontrivial constant additive factor ɛ < 1/2 in just one desired coordinate, is at least as hard as the long standing squareroot sum problem, as well as a more general arithmetic circuit decision problem that characterizes Ptime in a unitcost model of computation with arbitrary precision rational arithmetic; thus placing the approximation problem in P, or even NP, would resolve major open problems in the complexity of numerical computation. We show similar results for market equilibria: it is hard to estimate with any nontrivial accuracy the equilibrium prices in an exchange economy with a unique equilibrium, where the economy is given by explicit algebraic formulas for the excess demand functions. We define a class, FIXP, which captures search problems that can be cast as fixed point
Grid Resource Allocation and Control Using Computational Economies
 Grid Computing: Making the Global Infrastructure a Reality
, 2003
"... In this chapter, we describe the use of economic principles as the basis for Grid resource allocation policies and mechanisms. A computational economy in which users “buy ” resources from their owners is an attractive method of controlling Grid resource allocation for several reasons. Economies are ..."
Abstract

Cited by 58 (0 self)
 Add to MetaCart
(Show Context)
In this chapter, we describe the use of economic principles as the basis for Grid resource allocation policies and mechanisms. A computational economy in which users “buy ” resources from their owners is an attractive method of controlling Grid resource allocation for several reasons. Economies are intuitively easy to understand, they fit the model of flexible resource usage under local control (which is fundamental to Grid computing), and they can be analyzed through a considerable body of extant theory. We discuss many of the fundamental characteristics of computational economies, particularly as they pertain to Grid computing. We also present Gcommerce — a framework that we have used to investigate Grid resource economies — as an example of the type of results that are possible. Finally, we discuss several of the issues associated with empirical investigation of Grid economies as a motivation for future work. 1