Results 1  10
of
42
Cacheoblivious priority queue and graph algorithm applications
 In Proc. 34th Annual ACM Symposium on Theory of Computing
, 2002
"... In this paper we develop an optimal cacheoblivious priority queue data structure, supporting insertion, deletion, and deletemin operations in O ( 1 B logM/B N) amortized memory B transfers, where M and B are the memory and block transfer sizes of any two consecutive levels of a multilevel memory hi ..."
Abstract

Cited by 68 (9 self)
 Add to MetaCart
In this paper we develop an optimal cacheoblivious priority queue data structure, supporting insertion, deletion, and deletemin operations in O ( 1 B logM/B N) amortized memory B transfers, where M and B are the memory and block transfer sizes of any two consecutive levels of a multilevel memory hierarchy. In a cacheoblivious data structure, M and B are not used in the description of the structure. The bounds match the bounds of several previously developed externalmemory (cacheaware) priority queue data structures, which all rely crucially on knowledge about M and B. Priority queues are a critical component in many of the best known externalmemory graph algorithms, and using our cacheoblivious priority queue we develop several cacheoblivious graph algorithms.
On the limits of cacheobliviousness
 IN PROC. 35TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 2003
"... In this paper, we present lower bounds for permuting and sorting in the cacheoblivious model. We prove that (1) I/O optimal cacheoblivious comparison based sorting is not possible without a tall cache assumption, and (2) there does not exist an I/O optimalcacheoblivious algorithm for permuting, ..."
Abstract

Cited by 42 (6 self)
 Add to MetaCart
(Show Context)
In this paper, we present lower bounds for permuting and sorting in the cacheoblivious model. We prove that (1) I/O optimal cacheoblivious comparison based sorting is not possible without a tall cache assumption, and (2) there does not exist an I/O optimalcacheoblivious algorithm for permuting, not even in the presence of a tall cache assumption.Our results for sorting show the existence of an inherent tradeoff in the cacheoblivious model between the strength of the tall cache assumption and the overhead for the case M >> B, and show that Funnelsort and recursive binary mergesort are optimal algorithms in the sense that they attain this tradeoff.
Funnel heap  a cache oblivious priority queue
 In Proc. 13th Annual International Symposium on Algorithms and Computation, volume 2518 of LNCS
, 2002
"... Abstract The cache oblivious model of computation is a twolevel memory model with the assumption that the parameters of the model are unknown to the algorithms. A consequence of this assumption is that an algorithm efficient in the cache oblivious model is automatically efficient in a multilevel m ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
(Show Context)
Abstract The cache oblivious model of computation is a twolevel memory model with the assumption that the parameters of the model are unknown to the algorithms. A consequence of this assumption is that an algorithm efficient in the cache oblivious model is automatically efficient in a multilevel memory model. Arge et al. recently presented the first optimal cache oblivious priority queue, and demonstrated the importance of this result by providing the first cache oblivious algorithms for graph problems. Their structure uses cache oblivious sorting and selection as subroutines. In this paper, we devise an alternative optimal cache oblivious priority queue based only on binary merging. We also show that our structure can be made adaptive to different usage profiles. 1
Engineering a cacheoblivious sorting algorithm
 IN PROC. 6TH WORKSHOP ON ALGORITHM ENGINEERING AND EXPERIMENTS
, 2004
"... The cacheoblivious model of computation is a twolevel memory model with the assumption that the parameters of the model are unknown to the algorithms. A consequence of this assumption is that an algorithm efficient in the cache oblivious model is automatically efficient in a multilevel memory mod ..."
Abstract

Cited by 30 (1 self)
 Add to MetaCart
The cacheoblivious model of computation is a twolevel memory model with the assumption that the parameters of the model are unknown to the algorithms. A consequence of this assumption is that an algorithm efficient in the cache oblivious model is automatically efficient in a multilevel memory model. Since the introduction of the cacheoblivious model by Frigo et al. in 1999, a number of algorithms and data structures in the model has been proposed and analyzed. However, less attention has been given to whether the nice theoretical proporities of cacheoblivious algorithms carry over into practice. This paper is an algorithmic engineering study of cacheoblivious sorting. We investigate a number of implementation issues and parameters choices for the cacheoblivious sorting algorithm Lazy Funnelsort by empirical methods, and compare the final algorithm with Quicksort, the established standard for comparison based sorting, as well as with recent cacheaware proposals. The main result is a carefully implemented cacheoblivious sorting algorithm, which we compare to the best implementation of Quicksort we can find, and find that it competes very well for input residing in RAM, and outperforms Quicksort for input on disk.
Cacheoblivious data structures for orthogonal range searching
 IN PROC. ACM SYMPOSIUM ON COMPUTATIONAL GEOMETRY
, 2003
"... We develop cacheoblivious data structures for orthogonal range searching, the problem of finding all T points in a set of N points in Rd lying in a query hyperrectangle. Cacheoblivious data structures are designed to be efficient in arbitrary memory hierarchies. We describe a dynamic linearsize ..."
Abstract

Cited by 25 (5 self)
 Add to MetaCart
(Show Context)
We develop cacheoblivious data structures for orthogonal range searching, the problem of finding all T points in a set of N points in Rd lying in a query hyperrectangle. Cacheoblivious data structures are designed to be efficient in arbitrary memory hierarchies. We describe a dynamic linearsize data structure that answers ddimensional queries in O((N/B)11/d + T/B) memory transfers, where B is the block size of any two levels of a multilevel memory hierarchy. A point can be inserted into or deleted from this data structure in O(log2B N) memory transfers. We also develop a static structure for the twodimensional case that answers queries in O(logB N + T /B) memory transfers using O(N log22 N) space. The analysis of the latter structure requires that B = 22 c for some nonnegative integer constant c.
CacheOblivious Data Structures and Algorithms for Undirected BreadthFirst Search and Shortest Paths
 IN PROCEEDINGS OF THE 9TH SCANDINAVIAN WORKSHOP ON ALGORITHM THEORY
, 2004
"... We present improved cacheoblivious data structures and algorithms for breadthfirst search and the singlesource shortest path problem on undirected graphs with nonnegative edge weights. Our results close the performance gap between the currently best cacheaware algorithms for these problems and ..."
Abstract

Cited by 22 (8 self)
 Add to MetaCart
(Show Context)
We present improved cacheoblivious data structures and algorithms for breadthfirst search and the singlesource shortest path problem on undirected graphs with nonnegative edge weights. Our results close the performance gap between the currently best cacheaware algorithms for these problems and their cacheoblivious counterparts. Our shortestpath algorithm relies on a new data structure, called bucket heap, which is the first cacheoblivious priority queue to efficiently support a weak DecreaseKey operation.
CacheOblivious Planar Orthogonal Range Searching and Counting
 In Proc. ACM Symposium on Computational Geometry
, 2005
"... We present the first cacheoblivious data structure for planar orthogonal range counting, and improve on previous results for cacheoblivious planar orthogonal range searching. Our range counting structure uses O(N log2 N) space and answers queries using O(logB N) memory transfers, where B is the bl ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
(Show Context)
We present the first cacheoblivious data structure for planar orthogonal range counting, and improve on previous results for cacheoblivious planar orthogonal range searching. Our range counting structure uses O(N log2 N) space and answers queries using O(logB N) memory transfers, where B is the block size of any memory level in a multilevel memory hierarchy. Using bit manipulation techniques, the space can be further reduced to O(N). The structure can also be modified to support more general semigroup range sum queries in O(logB N) memory transfers, using O(N log2 N) space for threesided queries and O(N log 2 2 N / log2 log2 N)
Cacheoblivious data structures
, 2005
"... The memory system of most modern computers consists of a hierarchy of memory levels, with each level acting as a cache for the next; for a typical desktop computer the hierarchy consists of registers, level 1 cache, level 2 cache, level 3 cache, main memory, and disk. One of the essential characteri ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
The memory system of most modern computers consists of a hierarchy of memory levels, with each level acting as a cache for the next; for a typical desktop computer the hierarchy consists of registers, level 1 cache, level 2 cache, level 3 cache, main memory, and disk. One of the essential characteristics of the hierarchy is that the memory levels get larger and slower the further they get from the processor, with the access time increasing most dramatically between main memory and disk. Another characteristics is that data is moved between levels in large blocks. As a consequence of this, the memory access pattern of an algorithm has a major influence on its practical running time. Unfortunately, the RAM model (Figure 38.1) traditionally used to design and analyze algorithms is not capable of capturing this, since it assumes that all memory accesses take equal time. Because of the shortcomings of the RAM model, a number of more realistic models have been proposed in recent years. The most successful of these models is the simple twolevel I/Omodel introduced by Aggarwal and Vitter [2] (Figure 38.2). In this model the memory hierarchy is assumed to consist of a fast memory of size M and a slower infinite memory, and data is transfered between the levels in blocks of B consecutive elements. Computation
The Cost of CacheOblivious Searching
, 2003
"... Tight bounds on the cost of cacheoblivious searching are proved. It is shown that no cacheoblivious search structure can guarantee that a search performs fewer than lg e logB N block transfers between any two levels of the memory hierarchy. This lowerbound holds even if all of the block sizes ar ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
Tight bounds on the cost of cacheoblivious searching are proved. It is shown that no cacheoblivious search structure can guarantee that a search performs fewer than lg e logB N block transfers between any two levels of the memory hierarchy. This lowerbound holds even if all of the block sizes are limited to be powers of 2. A modified version of the van Emde Boas layout is proposed, whose expected block transfers between any two levels of the memory hierarchy arbitrarily close to [lg e + O(lg lg B / lg B)] logB N + O(1).This factor approaches lg e ss 1.443 as B increases. The expectation is taken over the random placement of the first element of the structure in memory. As searching in the Disk Access Model (DAM) can be performed in logB N + 1 block transfers, this result shows a separation between the 2level DAM and cacheoblivious memoryhierarchy models. By extending the DAM model to k levels, multilevel memoryhierarchies can be modelled. It is shown that as k grows, the search costs of the optimal klevel DAM search structure and of the optimal cacheoblivious search structure rapidlyconverge. This demonstrates that for a multilevel memory hierarchy, a simple cacheoblivious structure almost replicates the performance of an optimal parameterized klevel DAM structure.