Results 1 
5 of
5
A finite axiomatization of inductiverecursive definitions
 Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science
, 1999
"... Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an in ..."
Abstract

Cited by 42 (14 self)
 Add to MetaCart
Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an inductively defined set substantially and allows us to introduce universes and higher order universes (but not a Mahlo universe). In this article we give a finite axiomatization of inductiverecursive definitions. We prove consistency by constructing a settheoretic model which makes use of one Mahlo cardinal. 1
Structured Type Theory
, 1999
"... Introduction We present our implementation AGDA of type theory. We limit ourselves in this presentation to a rather primitive form of type theory (dependent product with a simple notion of sorts) that we extend to structure facility we find in most programming language: let expressions (local defin ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
Introduction We present our implementation AGDA of type theory. We limit ourselves in this presentation to a rather primitive form of type theory (dependent product with a simple notion of sorts) that we extend to structure facility we find in most programming language: let expressions (local definition) and a package mechanism. We call this language Structured Type Theory. The first part describes the syntax of the language and an informal description of the typechecking. The second part contains a detailed description of a core language, which is used to implement Strutured Type Theory. We give a realisability semantics, and typechecking rules are proved correct with respect to this semantics. The notion of metavariables is explained at this level. The third part explains how to interpret Structured Type Theory in this core language. The main contributions are: ffl use of explicit substitution to simplify and make
Setoids in Type Theory
, 2000
"... Formalising mathematics in dependent type theory often requires to use setoids, i.e. types with an explicit equality relation, as a representation of sets. This paper surveys some possible denitions of setoids and assesses their suitability as a basis for developing mathematics. In particular, we ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
Formalising mathematics in dependent type theory often requires to use setoids, i.e. types with an explicit equality relation, as a representation of sets. This paper surveys some possible denitions of setoids and assesses their suitability as a basis for developing mathematics. In particular, we argue that a commonly advocated approach to partial setoids is unsuitable, and more generally that total setoids seem better suited for formalising mathematics. 1
A certified, corecursive implementation of exact real numbers
 Theoretical Computer Science
, 2006
"... We implement exact real numbers in the logical framework Coq using streams, i.e., infinite sequences, of digits, and characterize constructive real numbers through a minimal axiomatization. We prove that our construction inhabits the axiomatization, working formally with coinductive types and corecu ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
We implement exact real numbers in the logical framework Coq using streams, i.e., infinite sequences, of digits, and characterize constructive real numbers through a minimal axiomatization. We prove that our construction inhabits the axiomatization, working formally with coinductive types and corecursive proofs. Thus we obtain reliable, corecursive algorithms for computing on real numbers.
Formal Topologies on the Set of FirstOrder Formulae
 Journal of Symbolic Logic
, 1998
"... this paper that the question has a simple negative answer. This raised further natural questions on what can be said about the points of these two topologies; we give some answers. The observation that topological models for firstorder theories can expressed in the framework of locales appears, for ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
this paper that the question has a simple negative answer. This raised further natural questions on what can be said about the points of these two topologies; we give some answers. The observation that topological models for firstorder theories can expressed in the framework of locales appears, for instance, in Fourman and Grayson [6], where the analogy between points of a locale and models of a theory is emphasised; the identification of formal points with Henkin sets, gives a precise form to this analogy. We replace the use of locales by formal topology, which can be expressed in a predicative framework such as MartinLof's type theory. Prooftheoretic issues are also considered by Dragalin [4], who presents a topological completeness proof using only finitary inductive definitions. Palmgren and Moerdijk [10] is also concerned with constructions of models: using sheaf semantics, they obtain a stronger conservativity result than the one in [3]. We will first investigate the difference between the DedekindMacNeille cover and the inductive cover. It easy to see that \Delta DM is stronger than \Delta I , that is, OE \Delta I U implies OE \Delta DM U , but the converse does not hold in general. The notion of point is not primitive in formal topology and therefore it is natural to require that a formal topology has some notion of positivity defined on the basic neighbourhoods; that a neighbourhood is positive then corresponds to, in ordinary point based topology, that it is inhabited by some point. We will show several negative results on positivity, both for the inductive topology and the DedekindMacNeille topology. The points of an inductive topology correspond to Henkin sets, but the DedekindMacNeille topology has, in general, no points. Our reasoning is constructi...