Results 1 
6 of
6
Algebra of logic programming
 International Conference on Logic Programming
, 1999
"... At present, the field of declarative programming is split into two main areas based on different formalisms; namely, functional programming, which is based on lambda calculus, and logic programming, which is based on firstorder logic. There are currently several language proposals for integrating th ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
At present, the field of declarative programming is split into two main areas based on different formalisms; namely, functional programming, which is based on lambda calculus, and logic programming, which is based on firstorder logic. There are currently several language proposals for integrating the expressiveness of these two models of computation. In this thesis we work towards an integration of the methodology from the two research areas. To this end, we propose an algebraic approach to reasoning about logic programs, corresponding to the approach taken in functional programming. In the first half of the thesis we develop and discuss a framework which forms the basis for our algebraic analysis and transformation methods. The framework is based on an embedding of definite logic programs into lazy functional programs in Haskell, such that both the declarative and the operational semantics of the logic programs are preserved. In spite of its conciseness and apparent simplicity, the embedding proves to have many interesting properties and it gives rise to an algebraic semantics of logic programming. It also allows us to reason about logic programs in a simple calculational style, using rewriting and the algebraic laws of combinators. In the embedding, the meaning of a logic program arises compositionally from the meaning of its constituent subprograms and the combinators that connect them. In the second half of the thesis we explore applications of the embedding to the algebraic transformation of logic programs. A series of examples covers simple program derivations, where our techniques simplify some of the current techniques. Another set of examples explores applications of the more advanced program development techniques from the Algebra of Programming by Bird and de Moor [18], where we expand the techniques currently available for logic program derivation and optimisation. To my parents, Sandor and Erzsebet. And the end of all our exploring Will be to arrive where we started And know the place for the first time.
A Relational Approach To Optimization Problems
, 1996
"... The main contribution of this thesis is a study of the dynamic programming and greedy strategies for solving combinatorial optimization problems. The study is carried out in the context of a calculus of relations, and generalises previous work by using a loop operator in the imperative programming s ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The main contribution of this thesis is a study of the dynamic programming and greedy strategies for solving combinatorial optimization problems. The study is carried out in the context of a calculus of relations, and generalises previous work by using a loop operator in the imperative programming style for generating feasible solutions, rather than the fold and unfold operators of the functional programming style. The relationship between fold operators and loop operators is explored, and it is shown how to convert from the former to the latter. This fresh approach provides additional insights into the relationship between dynamic programming and greedy algorithms, and helps to unify previously distinct approaches to solving combinatorial optimization problems. Some of the solutions discovered are new and solve problems which had previously proved difficult. The material is illustrated with a selection of problems and solutions that is a mixture of old and new. Another contribution is the invention of a new calculus, called the graph calculus, which is a useful tool for reasoning in the relational calculus and other nonrelational calculi. The graph
Dynamic Programming: a different perspective
 Algorithmic Languages and Calculi
, 1997
"... Dynamic programming has long been used as an algorithm design technique, with various mathematical theories proposed to model it. Here we take a different perspective, using a relational calculus to model the problems and solutions using dynamic programming. This approach serves to shed new light on ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Dynamic programming has long been used as an algorithm design technique, with various mathematical theories proposed to model it. Here we take a different perspective, using a relational calculus to model the problems and solutions using dynamic programming. This approach serves to shed new light on the different styles of dynamic programming, representing them by different search strategies of the treelike space of partial solutions. 1 INTRODUCTION AND HISTORY Dynamic programming is an algorithm design technique for solving many different types of optimization problem, applicable to such diverse fields as operations research (Ecker and Kupferschmid, 1988) and neutron transport theory (Bellman, Kagiwada and Kalaba, 1967). The mathematical theory of the subject dates back to 1957, when Richard Bellman (Bellman, 1957) first popularized the idea, producing a mathematical theory to model multistage decision processes and to solve related optimization problems. He was also the first to i...
Between Dynamic Programming and Greedy: Data Compression
 Programming Research Group, 11 Keble Road, Oxford OX1 3QD
, 1995
"... The derivation of certain algorithms can be seen as a hybrid form of dynamic programming and the greedy paradigm. We present a generic theorem about such algorithms, and show how it can be applied to the derivation of an algorithm for data compression. 1 Introduction Dynamic programming is a techni ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
The derivation of certain algorithms can be seen as a hybrid form of dynamic programming and the greedy paradigm. We present a generic theorem about such algorithms, and show how it can be applied to the derivation of an algorithm for data compression. 1 Introduction Dynamic programming is a technique for solving optimisation problems. A typical dynamic programming algorithm proceeds by decomposing the input in all possible ways, recursively solving the subproblems, and combining optimal solutions to subproblems into an optimal solution for the whole problem. The greedy paradigm is also a technique for solving optimisation problems and differs from dynamic programming in that only one decomposition of the input is considered. Such a decomposition is usually chosen to maximise some objective function, and this explains the term `greedy'. In our earlier work, we have characterised the use of dynamic programming and the greedy paradigm, using the categorical calculus of relations to der...
The Application of Automated Reasoning to Formal Models of Combinatorial Optimization
 Applied Mathematics and Computation
"... Many formalisms have been proposed over the years to capture combinatorial optimization algorithms such as dynamic programming, branch and bound, and greedy. In 1989 Helman presented a common formalism that captures dynamic programming and branch and bound type algorithms. The formalism was late ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Many formalisms have been proposed over the years to capture combinatorial optimization algorithms such as dynamic programming, branch and bound, and greedy. In 1989 Helman presented a common formalism that captures dynamic programming and branch and bound type algorithms. The formalism was later extended to include greedy algorithms. In this paper, we describe the application of automated reasoning techniques to the domain of our model, in particular considering some representational issues and demonstrating that proofs about the model can be obtained by an automated reasoning program. The longterm objective of this research is to develop a methodology for using automated reasoning to establish new results within the theory, including the derivation of new lower bounds and the discovery (and verification) of new combinatorial search strategies. 1 Introduction Many formalisms have been proposed over the years to capture combinatorial optimization algorithms such as dynami...
Perfect Dynamics for Neural Networks
"... this article we take another starting point and that is to consider perfect dynamics. We say that a recurrent ANN admits perfect dynamics if the dynamical system given by the update operator of the network has an attractor whose basin of attraction covers the set of all possible initial solution can ..."
Abstract
 Add to MetaCart
this article we take another starting point and that is to consider perfect dynamics. We say that a recurrent ANN admits perfect dynamics if the dynamical system given by the update operator of the network has an attractor whose basin of attraction covers the set of all possible initial solution candidates. One may wonder whether neural networks that admit perfect dynamics can be interesting in applications. In this article we show that there exist a family of such networks (or dynamics). We introduce