Results 1 
2 of
2
Algebra of logic programming
 International Conference on Logic Programming
, 1999
"... At present, the field of declarative programming is split into two main areas based on different formalisms; namely, functional programming, which is based on lambda calculus, and logic programming, which is based on firstorder logic. There are currently several language proposals for integrating th ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
At present, the field of declarative programming is split into two main areas based on different formalisms; namely, functional programming, which is based on lambda calculus, and logic programming, which is based on firstorder logic. There are currently several language proposals for integrating the expressiveness of these two models of computation. In this thesis we work towards an integration of the methodology from the two research areas. To this end, we propose an algebraic approach to reasoning about logic programs, corresponding to the approach taken in functional programming. In the first half of the thesis we develop and discuss a framework which forms the basis for our algebraic analysis and transformation methods. The framework is based on an embedding of definite logic programs into lazy functional programs in Haskell, such that both the declarative and the operational semantics of the logic programs are preserved. In spite of its conciseness and apparent simplicity, the embedding proves to have many interesting properties and it gives rise to an algebraic semantics of logic programming. It also allows us to reason about logic programs in a simple calculational style, using rewriting and the algebraic laws of combinators. In the embedding, the meaning of a logic program arises compositionally from the meaning of its constituent subprograms and the combinators that connect them. In the second half of the thesis we explore applications of the embedding to the algebraic transformation of logic programs. A series of examples covers simple program derivations, where our techniques simplify some of the current techniques. Another set of examples explores applications of the more advanced program development techniques from the Algebra of Programming by Bird and de Moor [18], where we expand the techniques currently available for logic program derivation and optimisation. To my parents, Sandor and Erzsebet. And the end of all our exploring Will be to arrive where we started And know the place for the first time.
Constructing RedBlack Trees
, 1999
"... This paper explores the structure of redblack trees by solving an apparently simple problem: given an ascending sequence of elements, construct a redblack tree which contains the elements in symmetric order. Several extreme redblack tree shapes are characterized: trees of minimum and maximum heig ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
This paper explores the structure of redblack trees by solving an apparently simple problem: given an ascending sequence of elements, construct a redblack tree which contains the elements in symmetric order. Several extreme redblack tree shapes are characterized: trees of minimum and maximum height, trees with a minimal and with a maximal proportion of red nodes. These characterizations are obtained by relating tree shapes to various number systems. In addition, connections to leftcomplete trees, AVL trees, and halfbalanced trees are highlighted. 1 Introduction Redblack trees are an elegant searchtree scheme that guarantees O(log n) worstcase running time of basic dynamicset operations. Recently, C. Okasaki (1998; 1999) presented an impressively simple functional implementation of redblack trees. In this paper we plunge deeper into the structure of redblack trees by solving an apparently simple problem: given an ascending sequence of elements, construct a redblack tree whic...