Results 1 
9 of
9
Representation Dependence in Probabilistic Inference
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 2004
"... Nondeductive reasoning systems are often representation dependent: representing the same situation in two different ways may cause such a system to return two different answers. Some have viewed ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
Nondeductive reasoning systems are often representation dependent: representing the same situation in two different ways may cause such a system to return two different answers. Some have viewed
Gödel's program for new axioms: Why, where, how and what?
 IN GODEL '96
, 1996
"... From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided numbertheoretical propositions (of the form obtained in his incompleteness results) and undecided settheoretical propositions (in particular CH). As to the nature of ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided numbertheoretical propositions (of the form obtained in his incompleteness results) and undecided settheoretical propositions (in particular CH). As to the nature of these, Gödel made a variety of suggestions, but most frequently he emphasized the route of introducing ever higher axioms of in nity. In particular, he speculated (in his 1946 Princeton remarks) that there might be a uniform (though nondecidable) rationale for the choice of the latter. Despite the intense exploration of the "higher infinite" in the last 30odd years, no single rationale of that character has emerged. Moreover, CH still remains undecided by such axioms, though they have been demonstrated to have many other interesting settheoretical consequences. In this paper, I present a new very general notion of the "unfolding" closure of schematically axiomatized formal systems S which provides a uniform systematic means of expanding in an essential way both the language and axioms (and hence theorems) of such systems S. Reporting joint work with T. Strahm, a characterization is given in more familiar terms in the case that S is a basic
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
The Mathematical Development Of Set Theory  From Cantor To Cohen
 The Bulletin of Symbolic Logic
, 1996
"... This article is dedicated to Professor Burton Dreben on his coming of age. I owe him particular thanks for his careful reading and numerous suggestions for improvement. My thanks go also to Jose Ruiz and the referee for their helpful comments. Parts of this account were given at the 1995 summer meet ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
This article is dedicated to Professor Burton Dreben on his coming of age. I owe him particular thanks for his careful reading and numerous suggestions for improvement. My thanks go also to Jose Ruiz and the referee for their helpful comments. Parts of this account were given at the 1995 summer meeting of the Association for Symbolic Logic at Haifa, in the Massachusetts Institute of Technology logic seminar, and to the Paris Logic Group. The author would like to express his thanks to the various organizers, as well as his gratitude to the Hebrew University of Jerusalem for its hospitality during the preparation of this article in the autumn of 1995.
A Logical Characterization of Iterated Admissibility
"... Brandenburger, Friedenberg, and Keisler provide an epistemic characterization of iterated admissibility (i.e., iterated deletion of weakly dominated strategies) where uncertainty is represented using LPSs (lexicographic probability sequences). Their characterization holds in a rich structure called ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Brandenburger, Friedenberg, and Keisler provide an epistemic characterization of iterated admissibility (i.e., iterated deletion of weakly dominated strategies) where uncertainty is represented using LPSs (lexicographic probability sequences). Their characterization holds in a rich structure called a complete structure, where all types are possible. Here, a logical characterization of iterated admissibility is given that involves only standard probability and holds in all structures, not just complete structures. Roughly speaking, our characterization shows that iterated admissibility captures the intuition that “all the agent knows ” is that agents satisfy the appropriate rationality assumptions. 1
The Academy of Sciences of Czech Republic
, 1996
"... Abstract. We investigate the sequential topology τs on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity of B in separation axioms for the sequential topology. The main result is that a necessary and sufficient condition for B ..."
Abstract
 Add to MetaCart
Abstract. We investigate the sequential topology τs on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity of B in separation axioms for the sequential topology. The main result is that a necessary and sufficient condition for B to carry a strictly positive Maharam submeasure is that B is ccc and that the space (B, τs) is Hausdorff. We also characterize sequential cardinals.
A System of Axioms of Set Theory for the
"... This paper proposes and discusses a list of axioms for set theory based on the principle: Accept as much regularity or specificity as possible without weakening the theory. ..."
Abstract
 Add to MetaCart
This paper proposes and discusses a list of axioms for set theory based on the principle: Accept as much regularity or specificity as possible without weakening the theory.
The Sequential Topology on . . .
"... We investigate the sequential topology s on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity ofB in separation axioms for the sequential topology. The main result is that a necessary and su cient condition for B to carry a s ..."
Abstract
 Add to MetaCart
We investigate the sequential topology s on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity ofB in separation axioms for the sequential topology. The main result is that a necessary and su cient condition for B to carry a strictly positive Maharam submeasure is that B is ccc and that the space (B; s) is Hausdor. We also characterize sequential cardinals.