Results 1  10
of
122
Markov Logic Networks
 MACHINE LEARNING
, 2006
"... We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the ..."
Abstract

Cited by 816 (39 self)
 Add to MetaCart
We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a firstorder formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudolikelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a realworld database and knowledge base in a university domain illustrate the promise of this approach.
ℓdiversity: Privacy beyond kanonymity
 IN ICDE
, 2006
"... Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called kanonymity has gained popularity. In a kanonymized dataset, each record is indistinguishable from at least k − 1 other records with resp ..."
Abstract

Cited by 672 (13 self)
 Add to MetaCart
Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called kanonymity has gained popularity. In a kanonymized dataset, each record is indistinguishable from at least k − 1 other records with respect to certain “identifying ” attributes. In this paper we show using two simple attacks that a kanonymized dataset has some subtle, but severe privacy problems. First, an attacker can discover the values of sensitive attributes when there is little diversity in those sensitive attributes. This kind of attack is a known problem [60]. Second, attackers often have background knowledge, and we show that kanonymity does not guarantee privacy against attackers using background knowledge. We give a detailed analysis of these two attacks and we propose a novel and powerful privacy criterion called ℓdiversity that can defend against such attacks. In addition to building a formal foundation for ℓdiversity, we show in an experimental evaluation that ℓdiversity is practical and can be implemented efficiently.
Efficient Query Evaluation on Probabilistic Databases
, 2004
"... We describe a system that supports arbitrarily complex SQL queries with ”uncertain” predicates. The query semantics is based on a probabilistic model and the results are ranked, much like in Information Retrieval. Our main focus is efficient query evaluation, a problem that has not received attentio ..."
Abstract

Cited by 456 (47 self)
 Add to MetaCart
We describe a system that supports arbitrarily complex SQL queries with ”uncertain” predicates. The query semantics is based on a probabilistic model and the results are ranked, much like in Information Retrieval. Our main focus is efficient query evaluation, a problem that has not received attention in the past. We describe an optimization algorithm that can compute efficiently most queries. We show, however, that the data complexity of some queries is #Pcomplete, which implies that these queries do not admit any efficient evaluation methods. For these queries we describe both an approximation algorithm and a MonteCarlo simulation algorithm.
The Independent Choice Logic for modelling multiple agents under uncertainty
 Artificial Intelligence
, 1997
"... Inspired by game theory representations, Bayesian networks, influence diagrams, structured Markov decision process models, logic programming, and work in dynamical systems, the independent choice logic (ICL) is a semantic framework that allows for independent choices (made by various agents, includi ..."
Abstract

Cited by 173 (10 self)
 Add to MetaCart
(Show Context)
Inspired by game theory representations, Bayesian networks, influence diagrams, structured Markov decision process models, logic programming, and work in dynamical systems, the independent choice logic (ICL) is a semantic framework that allows for independent choices (made by various agents, including nature) and a logic program that gives the consequence of choices. This representation can be used as a specification for agents that act in a world, make observations of that world and have memory, as well as a modelling tool for dynamic environments with uncertainty. The rules specify the consequences of an action, what can be sensed and the utility of outcomes. This paper presents a possibleworlds semantics for ICL, and shows how to embed influence diagrams, structured Markov decision processes, and both the strategic (normal) form and extensive (gametree) form of games within the Thanks to Craig Boutilier and Holger Hoos for detailed comments on this paper. This work was supporte...
Managing Uncertainty and Vagueness in Description Logics for the Semantic Web
, 2007
"... Ontologies play a crucial role in the development of the Semantic Web as a means for defining shared terms in web resources. They are formulated in web ontology languages, which are based on expressive description logics. Significant research efforts in the semantic web community are recently direct ..."
Abstract

Cited by 135 (14 self)
 Add to MetaCart
Ontologies play a crucial role in the development of the Semantic Web as a means for defining shared terms in web resources. They are formulated in web ontology languages, which are based on expressive description logics. Significant research efforts in the semantic web community are recently directed towards representing and reasoning with uncertainty and vagueness in ontologies for the Semantic Web. In this paper, we give an overview of approaches in this context to managing probabilistic uncertainty, possibilistic uncertainty, and vagueness in expressive description logics for the Semantic Web.
Parameter learning of logic programs for symbolicstatistical modeling
 Journal of Artificial Intelligence Research
, 2001
"... We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. de nite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distributio ..."
Abstract

Cited by 122 (20 self)
 Add to MetaCart
We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. de nite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distribution semantics, possible world semantics with a probability distribution which is unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs and Bayesian networks. We also propose a new EM algorithm, the graphical EM algorithm, thatrunsfora class of parameterized logic programs representing sequential decision processes where each decision is exclusive and independent. It runs on a new data structure called support graphs describing the logical relationship between observations and their explanations, and learns parameters by computing inside and outside probability generalized for logic programs. The complexity analysis shows that when combined with OLDT search for all explanations for observations, the graphical EM algorithm, despite its generality, has the same time complexity as existing EM algorithms, i.e. the BaumWelch algorithm for HMMs, the InsideOutside algorithm for PCFGs, and the one for singly connected Bayesian networks that have beendeveloped independently in each research eld. Learning experiments with PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can signi cantly outperform the InsideOutside algorithm. 1.
Worstcase background knowledge for privacypreserving . . .
 IN ICDE
, 2007
"... Recent work has shown the necessity of considering an attacker’s background knowledge when reasoning about privacy in data publishing. However, in practice, the data publisher does not know what background knowledge the attacker possesses. Thus, it is important to consider the worstcase. In this pa ..."
Abstract

Cited by 96 (1 self)
 Add to MetaCart
Recent work has shown the necessity of considering an attacker’s background knowledge when reasoning about privacy in data publishing. However, in practice, the data publisher does not know what background knowledge the attacker possesses. Thus, it is important to consider the worstcase. In this paper, we initiate a formal study of worstcase background knowledge. We propose a language that can express any background knowledge about the data. We provide a polynomial time algorithm to measure the amount of disclosure of sensitive information in the worst case, given that the attacker has at most k pieces of information in this language. We also provide a method to efficiently sanitize the data so that the amount of disclosure in the worst case is less than a specified threshold.
Background to Qualitative Decision Theory
 AI MAGAZINE
, 1999
"... This paper provides an overview of the field of qualitative decision theory: its motivating tasks and issues, its antecedents, and its prospects. Qualitative decision theory studies qualitative approaches to problems of decision making and their sound and effective reconciliation and integration ..."
Abstract

Cited by 95 (4 self)
 Add to MetaCart
(Show Context)
This paper provides an overview of the field of qualitative decision theory: its motivating tasks and issues, its antecedents, and its prospects. Qualitative decision theory studies qualitative approaches to problems of decision making and their sound and effective reconciliation and integration with quantitative approaches. Though it inherits from a long tradition, the field offers a new focus on a number of important unanswered questions of common concern to artificial intelligence, economics, law, psychology, and management.
Probabilistic reasoning with answer sets
 In Proceedings of LPNMR7
, 2004
"... Abstract. We give a logic programming based account of probability and describe a declarative language Plog capable of reasoning which combines both logical and probabilistic arguments. Several nontrivial examples illustrate the use of Plog for knowledge representation. 1 ..."
Abstract

Cited by 91 (11 self)
 Add to MetaCart
Abstract. We give a logic programming based account of probability and describe a declarative language Plog capable of reasoning which combines both logical and probabilistic arguments. Several nontrivial examples illustrate the use of Plog for knowledge representation. 1
Learning to reason
 Journal of the ACM
, 1994
"... Abstract. We introduce a new framework for the study of reasoning. The Learning (in order) to Reason approach developed here views learning as an integral part of the inference process, and suggests that learning and reasoning should be studied together. The Learning to Reason framework combines the ..."
Abstract

Cited by 70 (25 self)
 Add to MetaCart
(Show Context)
Abstract. We introduce a new framework for the study of reasoning. The Learning (in order) to Reason approach developed here views learning as an integral part of the inference process, and suggests that learning and reasoning should be studied together. The Learning to Reason framework combines the interfaces to the world used by known learning models with the reasoning task and a performance criterion suitable for it. In this framework, the intelligent agent is given access to its favorite learning interface, and is also given a grace period in which it can interact with this interface and construct a representation KB of the world W. The reasoning performance is measured only after this period, when the agent is presented with queries � from some query language, relevant to the world, and has to answer whether W implies �. The approach is meant to overcome the main computational difficulties in the traditional treatment of reasoning which stem from its separation from the “world”. Since the agent interacts with the world when constructing its knowledge representation it can choose a representation that is useful for the task at hand. Moreover, we can now make explicit the dependence of the reasoning performance on the environment the agent interacts with. We show how previous results from learning theory and reasoning fit into this framework and