Results 1  10
of
32
The Tile Model
 PROOF, LANGUAGE AND INTERACTION: ESSAYS IN HONOUR OF ROBIN MILNER
, 1996
"... In this paper we introduce a model for a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting, in particular from the rewriting logic framework [Mes92], and of concurrency theory: among the ..."
Abstract

Cited by 65 (24 self)
 Add to MetaCart
In this paper we introduce a model for a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting, in particular from the rewriting logic framework [Mes92], and of concurrency theory: among the others, the structured operational semantics [Plo81], the context systems [LX90] and the structured transition systems [CM92] approaches. Our model recollects many properties of these sources: first, it provides a compositional way to describe both the states and the sequences of transitions performed by a given system, stressing their distributed nature. Second, a suitable notion of typed proof allows to take into account also those formalisms relying on the notions of synchronization and sideeffects to determine the actual behaviour of a system. Finally, an equivalence relation over sequences of transitions is defined, equipping the system under analysis with a concurrent semantics, ...
An Algebraic Presentation of Term Graphs, via GSMonoidal Categories
 Applied Categorical Structures
, 1999
"... . We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particula ..."
Abstract

Cited by 37 (24 self)
 Add to MetaCart
. We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particular, we show that term graphs over a signature \Sigma are onetoone with the arrows of the free gsmonoidal category generated by \Sigma. Such a category satisfies all the axioms for Cartesian categories but for the naturality of two transformations (the discharger ! and the duplicator r), providing in this way an abstract and clear relationship between terms and term graphs. In particular, the absence of the naturality of r and ! has a precise interpretation in terms of explicit sharing and of loss of implicit garbage collection, respectively. Keywords: algebraic theories, directed acyclic graphs, gsmonoidal categories, symmetric monoidal categories, term graphs. Mathematical Subject Clas...
Reactive Systems over Cospans
, 2005
"... The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of wellbehaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimi ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of wellbehaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimits (or, more usually and generally, bicolimits) which need to be constructed separately within each model. In this paper, we o#er a general construction of such bicolimits in a class of bicategories of cospans. The construction sheds light on as well as extends Ehrig and Konig's rewriting via borrowed contexts and opens the way to a unified treatment of several applications.
An Inductive View of Graph Transformation
 In Workshop on Algebraic Development Techniques
, 1998
"... . The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result i ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
. The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result is built: This is the role played by (the application of) a substitution in term rewriting. Or inductively, showing how to build the class of all possible reductions from a set of basic ones: For term rewriting, this is the usual definition of the rewrite relation as the minimal closure of the rewrite rules. As far as graph transformation is concerned, the operational view is by far more popular: In this paper we lay the basis for the orthogonal view. We first provide an inductive description for graphs as arrows of a freely generated dgsmonoidal category. We then apply 2categorical techniques, already known for term and term graph rewriting [29, 7], recasting in this framework the...
A Relational Model of NonDeterministic Dataflow
 In CONCUR'98, volume 1466 of LNCS
, 1998
"... . We recast dataflow in a modern categorical light using profunctors as a generalisation of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational model. The development fits ..."
Abstract

Cited by 28 (13 self)
 Add to MetaCart
. We recast dataflow in a modern categorical light using profunctors as a generalisation of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational model. The development fits with the view of categories of models for concurrency and the general treatment of bisimulation they provide. In particular it fits with the recent categorical formulation of feedback using traced monoidal categories. The payoffs are: (1) explicit relations to existing models and semantics, especially the usual axioms of monotone IO automata are read off from the definition of profunctors, (2) a new definition of bisimulation for dataflow, the proof of the congruence of which benefits from the preservation properties associated with open maps and (3) a treatment of higherorder dataflow as a biproduct, essentially by following the geometry of interaction programme. 1 Introduction A fundament...
A BiCategorical Axiomatisation of Concurrent Graph Rewriting
, 1999
"... In this paper the concurrent semantics of doublepushout (DPO) graph rewriting, which is classically defined in terms of shiftequivalence classes of graph derivations, is axiomatised via the construction of a free monoidal bicategory. In contrast to a previous attempt based on 2categories, the us ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
In this paper the concurrent semantics of doublepushout (DPO) graph rewriting, which is classically defined in terms of shiftequivalence classes of graph derivations, is axiomatised via the construction of a free monoidal bicategory. In contrast to a previous attempt based on 2categories, the use of bicategories allows to define rewriting on concrete graphs. Thus, the problem of composition of isomorphism classes of rewriting sequences is avoided. Moreover, as a first step towards the recovery of the full expressive power of the formalism via a purely algebraic description, the concept of disconnected rules is introduced, i.e., rules whose interface graphs are made of disconnected nodes and edges only. It is proved that, under reasonable assumptions, rewriting via disconnected rules enjoys similar concurrency properties like in the classical approach.
Axioms for Contextual Net Processes
 In Automata, Languages and Programming, volume 1443 of LNCS
, 1998
"... . In the classical theory of Petri nets, a process is an operational description of the behaviour of a net, which takes into account the causal links between transitions in a sequence of firing steps. In the categorical framework developed in [19, 11], processes of a P/T net are modeled as arrows of ..."
Abstract

Cited by 14 (9 self)
 Add to MetaCart
. In the classical theory of Petri nets, a process is an operational description of the behaviour of a net, which takes into account the causal links between transitions in a sequence of firing steps. In the categorical framework developed in [19, 11], processes of a P/T net are modeled as arrows of a suitable monoidal category: In this paper we lay the basis of a similar characterization for contextual P/T nets, that is, P/T nets extended with read arcs, which allows a transition to check for the presence of a token in a place, without consuming it. 1 Introduction Petri nets [24] are probably the best studied and most used model for concurrent systems: Their range of applications covers a wide spectrum, from their use as a specification tool to their analysis as a suitable semantical domain. A recent extension to the classical model concerns a class of nets where transitions are able to check for the presence of a token in a place without actually consuming it. While the possibility ...
Normal Forms for Partitions and Relations
 Recent Trends in Algebraic Development Techniques, volume 1589 of Lect. Notes in Comp. Science
, 1999
"... Recently there has been a growing interest towards algebraic structures that are able to express formalisms different from the standard, treelike presentation of terms. Many of these approaches reveal a specific interest towards their application in the "distributed and concurrent systems" field, b ..."
Abstract

Cited by 14 (11 self)
 Add to MetaCart
Recently there has been a growing interest towards algebraic structures that are able to express formalisms different from the standard, treelike presentation of terms. Many of these approaches reveal a specific interest towards their application in the "distributed and concurrent systems" field, but an exhaustive comparison between them is difficult because their presentations can be quite dissimilar. This work is a first step towards a unified view, which is able to recast all those formalisms into a more general one, where they can be easily compared. We introduce a general schema for describing a characteristic normal form for many algebraic formalisms, and show that those normal forms can be thought of as arrows of suitable concrete monoidal categories.
Relational Semantics of NonDeterministic Dataflow
, 1997
"... We recast dataflow in a modern categorical light using profunctors as a generalization of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational model. The development fit ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We recast dataflow in a modern categorical light using profunctors as a generalization of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational model. The development fits with the view of categories of models for concurrency and the general treatment of bisimulation they provide. In particular it fits with the recent categorical formulation of feedback using traced monoidal categories. The payoffs are: (1) explicit relations to existing models and semantics, especially the usual axioms of monotone IO automata are read off from the definition of profunctors, (2) a new definition of bisimulation for dataflow, the proof of the congruence of which benefits from the preservation properties associated with open maps and (3) a treatment of higherorder dataflow as a biproduct, essentially by following the geometry of interaction programme.
Some Algebraic Laws for Spans (and Their Connections With MultiRelations)
 Proceedings of RelMiS 2001, Workshop on Relational Methods in Software. Electronic Notes in Theoretical Computer Science, n.44 v.3, Elsevier Science (2001
, 2001
"... This paper investigates some basic algebraic properties of the categories of spans and cospans (up to isomorphic supports) over the category Set of (small) sets and functions, analyzing the monoidal structures induced over both spans and cospans by the cartesian product and disjoint union of sets. O ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
This paper investigates some basic algebraic properties of the categories of spans and cospans (up to isomorphic supports) over the category Set of (small) sets and functions, analyzing the monoidal structures induced over both spans and cospans by the cartesian product and disjoint union of sets. Our results nd analogous counterparts in (and are partly inspired by) the theory of relational algebras, thus our paper also shed some light on the relationship between (co)spans and the categories of (multi)relations and of equivalence relations. And, since (co)spans yields an intuitive presentation in terms of dynamical system with input and output interfaces, our results introduce an expressive, twofold algebra that can serve as a specication formalism for rewriting systems and for composing software modules and open programs. Key words: Spans, multirelations, monoidal categories, system specications. Introduction The use of spans [1,6] (and of the dual notion of cospans) have been...