Results 1  10
of
36
Deriving Bisimulation Congruences for Reactive Systems
 In Proc. of CONCUR 2000, 2000. LNCS 1877
, 2000
"... . The dynamics of reactive systems, e.g. CCS, has often been de ned using a labelled transition system (LTS). More recently it has become natural in de ning dynamics to use reaction rules  i.e. unlabelled transition rules  together with a structural congruence. But LTSs lead more naturally to beha ..."
Abstract

Cited by 116 (14 self)
 Add to MetaCart
. The dynamics of reactive systems, e.g. CCS, has often been de ned using a labelled transition system (LTS). More recently it has become natural in de ning dynamics to use reaction rules  i.e. unlabelled transition rules  together with a structural congruence. But LTSs lead more naturally to behavioural equivalences. So one would like to derive from reaction rules a suitable LTS. This paper shows how to derive an LTS for a wide range of reactive systems. A label for an agent a is de ned to be any context F which intuitively is just large enough so that the agent Fa (\a in context F ") is able to perform a reaction. The key contribution of this paper is a precise de nition of \just large enough", in terms of the categorical notion of relative pushout (RPO), which ensures that bisimilarity is a congruence when sucient RPOs exist. Two examples  a simpli ed form of action calculi and termrewriting  are given, for which it is shown that su cient RPOs indeed exist. The thrust of thi...
Towards a quantum programming language
 Mathematical Structures in Computer Science
, 2004
"... The field of quantum computation suffers from a lack of syntax. In the absence of a convenient programming language, algorithms are frequently expressed in terms of hardware circuits or Turing machines. Neither approach particularly encourages structured programming or abstractions such as data type ..."
Abstract

Cited by 110 (13 self)
 Add to MetaCart
The field of quantum computation suffers from a lack of syntax. In the absence of a convenient programming language, algorithms are frequently expressed in terms of hardware circuits or Turing machines. Neither approach particularly encourages structured programming or abstractions such as data types. In this paper, we describe the syntax and semantics of a simple quantum programming language. This language provides highlevel features such as loops, recursive procedures, and structured data types. It is statically typed, and it has an interesting denotational semantics in terms of complete partial orders of superoperators. 1
Operational congruences for reactive systems
, 2001
"... This document consists of a slightly revised and corrected version of a dissertation ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
This document consists of a slightly revised and corrected version of a dissertation
Complete Axioms for Categorical Fixedpoint Operators
 In Proceedings of 15th Annual Symposium on Logic in Computer Science
, 2000
"... We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the fre ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness) . Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixedpoint operator is necessarily an iteration operator. 1. Introduction Fixed points play a central role in domain theory. Traditionally, one works with a category such as Cppo, the category of !continuous functions between !complete pointed partial orders. This possesses a leastfixedpoint oper...
Transition systems, link graphs and Petri nets
, 2004
"... A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavi ..."
Abstract

Cited by 26 (5 self)
 Add to MetaCart
A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavioural preorders and equivalences, such as the failures preorder (treated elsewhere) and bisimilarity, which are guaranteed to be congruential. The theory rests upon the notion of relative pushout previously introduced by the authors. The framework
From Action Calculi to Linear Logic
, 1998
"... . Milner introduced action calculi as a framework for investigating models of interactive behaviour. We present a typetheoretic account of action calculi using the propositionsastypes paradigm; the type theory has a sound and complete interpretation in Power's categorical models. We go on to give ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
. Milner introduced action calculi as a framework for investigating models of interactive behaviour. We present a typetheoretic account of action calculi using the propositionsastypes paradigm; the type theory has a sound and complete interpretation in Power's categorical models. We go on to give a sound translation of our type theory in the (type theory of) intuitionistic linear logic, corresponding to the relation between Benton's models of linear logic and models of action calculi. The conservativity of the syntactic translation is proved by a modelembedding construction using the Yoneda lemma. Finally, we briefly discuss how these techniques can also be used to give conservative translations between various extensions of action calculi. 1 Introduction Action calculi arose directly from the ßcalculus [MPW92]. They were introduced by Milner [Mil96], to provide a uniform notation for capturing many calculi of interaction such as the ßcalculus, the calculus, models of distribut...
The Structure of CallbyValue
, 2000
"... To my parents Understanding procedure calls is crucial in computer science and everyday programming. Among the most common strategies for passing procedure arguments (‘evaluation strategies’) are ‘callbyname’, ‘callbyneed’, and ‘callbyvalue’, where the latter is the most commonly used. While ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
To my parents Understanding procedure calls is crucial in computer science and everyday programming. Among the most common strategies for passing procedure arguments (‘evaluation strategies’) are ‘callbyname’, ‘callbyneed’, and ‘callbyvalue’, where the latter is the most commonly used. While reasoning about procedure calls is simple for callbyname, problems arise for callbyneed and callbyvalue, because it matters how often and in which order the arguments of a procedure are evaluated. We shall classify these problems and see that all of them occur for callbyvalue, some occur for callbyneed, and none occur for callbyname. In that sense, callbyvalue is the ‘greatest common denominator ’ of the three evaluation strategies. Reasoning about callbyvalue programs has been tackled by Eugenio Moggi’s ‘computational lambdacalculus’, which is based on a distinction between ‘values’
Value Recursion in Monadic Computations
 OGI School of Science and Engineering, OHSU
, 2002
"... viii 1 ..."
Axioms for Recursion in CallbyValue
 HIGHERORDER AND SYMBOLIC COMPUT
, 2001
"... We propose an axiomatization of fixpoint operators in typed callbyvalue programming languages, and give its justifications in two ways. First, it is shown to be sound and complete for the notion of uniform Tfixpoint operators of Simpson and Plotkin. Second, the axioms precisely account for Filins ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
We propose an axiomatization of fixpoint operators in typed callbyvalue programming languages, and give its justifications in two ways. First, it is shown to be sound and complete for the notion of uniform Tfixpoint operators of Simpson and Plotkin. Second, the axioms precisely account for Filinski's fixpoint operator derived from an iterator (infinite loop constructor) in the presence of firstclass continuations, provided that we define the uniformity principle on such an iterator via a notion of effectfreeness (centrality). We then explain how these two results are related in terms of the underlying categorical structures.