Results 1  10
of
734
The Nature of Statistical Learning Theory
, 1995
"... Abstract—Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on ..."
Abstract

Cited by 8950 (28 self)
 Add to MetaCart
Abstract—Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the developed theory were proposed. This made statistical learning theory not only a tool for the theoretical analysis but also a tool for creating practical algorithms for estimating multidimensional functions. This article presents a very general overview of statistical learning theory including both theoretical and algorithmic aspects of the theory. The goal of this overview is to demonstrate how the abstract learning theory established conditions for generalization which are more general than those discussed in classical statistical paradigms and how the understanding of these conditions inspired new algorithmic approaches to function estimation problems.
The capacity of wireless networks
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2000
"... When n identical randomly located nodes, each capable of transmitting at bits per second and using a fixed range, form a wireless network, the throughput @ A obtainable by each node for a randomly chosen destination is 2 bits per second under a noninterference protocol. If the nodes are optimally p ..."
Abstract

Cited by 2220 (32 self)
 Add to MetaCart
When n identical randomly located nodes, each capable of transmitting at bits per second and using a fixed range, form a wireless network, the throughput @ A obtainable by each node for a randomly chosen destination is 2 bits per second under a noninterference protocol. If the nodes are optimally placed in a disk of unit area, traffic patterns are optimally assigned, and each transmission’s range is optimally chosen, the bit–distance product that can be transported by the network per second is 2 @ A bitmeters per second. Thus even under optimal circumstances, the throughput is only 2 bits per second for each node for a destination nonvanishingly far away. Similar results also hold under an alternate physical model where a required signaltointerference ratio is specified for successful receptions. Fundamentally, it is the need for every node all over the domain to share whatever portion of the channel it is utilizing with nodes in its local neighborhood that is the reason for the constriction in capacity. Splitting the channel into several subchannels does not change any of the results. Some implications may be worth considering by designers. Since the throughput furnished to each user diminishes to zero as the number of users is increased, perhaps networks connecting smaller numbers of users, or featuring connections mostly with nearby neighbors, may be more likely to be find acceptance.
Boosting the margin: A new explanation for the effectiveness of voting methods
 In Proceedings International Conference on Machine Learning
, 1997
"... Abstract. One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show ..."
Abstract

Cited by 721 (52 self)
 Add to MetaCart
Abstract. One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this phenomenon is related to the distribution of margins of the training examples with respect to the generated voting classification rule, where the margin of an example is simply the difference between the number of correct votes and the maximum number of votes received by any incorrect label. We show that techniques used in the analysis of Vapnik’s support vector classifiers and of neural networks with small weights can be applied to voting methods to relate the margin distribution to the test error. We also show theoretically and experimentally that boosting is especially effective at increasing the margins of the training examples. Finally, we compare our explanation to those based on the biasvariance decomposition. 1
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 473 (2 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 421 (57 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph which corre...
Optimal Brain Damage
 Advances in Neural Information Processing Systems
, 1990
"... We have used informationtheoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improve ..."
Abstract

Cited by 420 (5 self)
 Add to MetaCart
We have used informationtheoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved speed of learning and/or classification. The basic idea is to use secondderivative information to make a tradeoff between network complexity and training set error. Experiments confirm the usefulness of the methods on a realworld application. 1 INTRODUCTION Most successful applications of neural network learning to realworld problems have been achieved using highly structured networks of rather large size [for example (Waibel, 1989; LeCun et al., 1990)]. As applications become more complex, the networks will presumably become even larger and more structured. Design tools and techniques for comparing different architectures and minimizing the network size will be needed. More impor...
Practical Issues in Temporal Difference Learning
 Machine Learning
, 1992
"... This paper examines whether temporal difference methods for training connectionist networks, such as Suttons's TD(lambda) algorithm can be successfully applied to complex realworld problems. A number of important practical issues are identified and discussed from a general theoretical perspective. ..."
Abstract

Cited by 363 (2 self)
 Add to MetaCart
This paper examines whether temporal difference methods for training connectionist networks, such as Suttons's TD(lambda) algorithm can be successfully applied to complex realworld problems. A number of important practical issues are identified and discussed from a general theoretical perspective. These practical issues are then examined in the context of a case study in which TD(lambda) is applied to learning the game of backgammon from the outcome of selfplay. This is apparently the first application of this algorithm to a complex nontrivial task. It is found that, with zero knowledge built in, the network is able to learn from scratch to play the entire game at a fairly strong intermediate level of performance which is clearly better than conventional commercial programs and which in fact surpasses comparable networks trained on a massive human expert data set. This indicates that TD learning may work better in practice than one would expect based on current theory, and it suggests that further analysis of TD methods, as well as applications in other complex domains may be worth investigating.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 309 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Efficient noisetolerant learning from statistical queries
 JOURNAL OF THE ACM
, 1998
"... In this paper, we study the problem of learning in the presence of classification noise in the probabilistic learning model of Valiant and its variants. In order to identify the class of “robust” learning algorithms in the most general way, we formalize a new but related model of learning from stat ..."
Abstract

Cited by 288 (6 self)
 Add to MetaCart
In this paper, we study the problem of learning in the presence of classification noise in the probabilistic learning model of Valiant and its variants. In order to identify the class of “robust” learning algorithms in the most general way, we formalize a new but related model of learning from statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual examples of the unknown target function, but is given access to an oracle providing estimates of probabilities over the sample space of random examples. One of our main results shows that any class of functions learnable from statistical queries is in fact learnable with classification noise in Valiant’s model, with a noise rate approaching the informationtheoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing that practically every class learnable in Valiant’s model and its variants can also be learned in the new model (and thus can be learned in the presence of noise). A notable exception to this statement is the class of parity functions, which we prove is not learnable from statistical queries, and for which no noisetolerant algorithm is known.
A Network Information Theory for Wireless Communication: Scaling Laws and Optimal Operation
 IEEE Transactions on Information Theory
, 2002
"... How much information can be carried over a wireless network with a multiplicity of nodes? What are the optimal strategies for information transmission and cooperation among the nodes? We obtain sharp information theoretic scaling laws under some conditions. ..."
Abstract

Cited by 272 (16 self)
 Add to MetaCart
How much information can be carried over a wireless network with a multiplicity of nodes? What are the optimal strategies for information transmission and cooperation among the nodes? We obtain sharp information theoretic scaling laws under some conditions.