Results 1  10
of
352
Functions from a set to a set
 Journal of Formalized Mathematics
, 1989
"... function from a set X into a set Y, denoted by “Function of X,Y ”, the set of all functions from a set X into a set Y, denoted by Funcs(X,Y), and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1] ..."
Abstract

Cited by 1007 (23 self)
 Add to MetaCart
function from a set X into a set Y, denoted by “Function of X,Y ”, the set of all functions from a set X into a set Y, denoted by Funcs(X,Y), and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1] in the new terminology. Also some basic facts about functions of two variables are proved.
Relations and their basic properties
 Journal of Formalized Mathematics
, 1989
"... Summary. We define here: mode Relation as a set of pairs, the domain, the codomain, and the field of relation; the empty and the identity relations, the composition of relations, the image and the inverse image of a set under a relation. Two predicates, = and ⊆, and three functions, ∪, ∩ and \ are ..."
Abstract

Cited by 982 (6 self)
 Add to MetaCart
Summary. We define here: mode Relation as a set of pairs, the domain, the codomain, and the field of relation; the empty and the identity relations, the composition of relations, the image and the inverse image of a set under a relation. Two predicates, = and ⊆, and three functions, ∪, ∩ and \ are redefined. Basic facts about the above mentioned notions are presented.
The ordinal numbers
 Journal of Formalized Mathematics
, 1989
"... Summary. We present the choice function rule in the beginning of the article. In the main part of the article we formalize the base of cardinal theory. In the first section we introduce the concept of cardinal numbers and order relations between them. We present here CantorBernstein theorem and oth ..."
Abstract

Cited by 627 (63 self)
 Add to MetaCart
Summary. We present the choice function rule in the beginning of the article. In the main part of the article we formalize the base of cardinal theory. In the first section we introduce the concept of cardinal numbers and order relations between them. We present here CantorBernstein theorem and other properties of order relation of cardinals. In the second section we show that every set has cardinal number equipotence to it. We introduce notion of alephs and we deal with the concept of finite set. At the end of the article we show two schemes of cardinal induction. Some definitions are based on [9] and [10].
Partial Functions
"... this article we prove some auxiliary theorems and schemes related to the articles: [1] and [2]. MML Identifier: PARTFUN1. WWW: http://mizar.org/JFM/Vol1/partfun1.html The articles [4], [6], [3], [5], [7], [8], and [1] provide the notation and terminology for this paper. We adopt the following rules ..."
Abstract

Cited by 426 (10 self)
 Add to MetaCart
this article we prove some auxiliary theorems and schemes related to the articles: [1] and [2]. MML Identifier: PARTFUN1. WWW: http://mizar.org/JFM/Vol1/partfun1.html The articles [4], [6], [3], [5], [7], [8], and [1] provide the notation and terminology for this paper. We adopt the following rules: x, y, y 1 , y 2 , z, z 1 , z 2 denote sets, P , Q, X , X 0 , X 1 , X 2 , Y , Y 0 , Y 1 , Y 2 , V , Z denote sets, and C, D denote non empty sets. We now state three propositions: (1) If P ` [: X 1
Binary operations
 Journal of Formalized Mathematics
, 1989
"... Summary. In this paper we define binary and unary operations on domains. We also define the following predicates concerning the operations:... is commutative,... is associative,... is the unity of..., and... is distributive wrt.... A number of schemes useful in justifying the existence of the operat ..."
Abstract

Cited by 330 (6 self)
 Add to MetaCart
Summary. In this paper we define binary and unary operations on domains. We also define the following predicates concerning the operations:... is commutative,... is associative,... is the unity of..., and... is distributive wrt.... A number of schemes useful in justifying the existence of the operations are proved. MML Identifier:BINOP_1. WWW:http://mizar.org/JFM/Vol1/binop_1.html The articles [4], [3], [5], [6], [1], and [2] provide the notation and terminology for this paper. Let f be a function and let a, b be sets. The functor f(a, b) yielding a set is defined by: (Def. 1) f(a, b) = f(〈a, b〉). In the sequel A is a set. Let A, B be non empty sets, let C be a set, let f be a function from [:A, B:] into C, let a be an element of A, and let b be an element of B. Then f(a, b) is an element of C. The following proposition is true (2) 1 Let A, B, C be non empty sets and f1, f2 be functions from [:A, B:] into C. Suppose that for every element a of A and for every element b of B holds f1(a, b) = f2(a, b). Then f1 = f2. Let A be a set. A unary operation on A is a function from A into A. A binary operation on A is a
Finite sets
 Journal of Formalized Mathematics
, 1989
"... Summary. The article contains the definition of a finite set based on the notion of finite sequence. Some theorems about properties of finite sets and finite families of sets are proved. ..."
Abstract

Cited by 310 (6 self)
 Add to MetaCart
Summary. The article contains the definition of a finite set based on the notion of finite sequence. Some theorems about properties of finite sets and finite families of sets are proved.
Families of sets
 Journal of Formalized Mathematics
, 1989
"... Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functors ∪, ∩, and \ are redefined for families of subsets of a set. Some properties of these notions are presented. ..."
Abstract

Cited by 301 (5 self)
 Add to MetaCart
Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functors ∪, ∩, and \ are redefined for families of subsets of a set. Some properties of these notions are presented.
Finite Sequences and Tuples of Elements of a Nonempty Sets
, 1990
"... this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a nonempty set D and it is denoted by element of D ..."
Abstract

Cited by 291 (7 self)
 Add to MetaCart
this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a nonempty set D and it is denoted by element of D
Domains and their Cartesian products
 Journal of Formalized Mathematics
, 1989
"... Summary. The article includes: theorems related to domains, theorems related to Cartesian products presented earlier in various articles and simplified here by substituting domains for sets and omitting the assumption that the sets involved must not be empty. Several schemes and theorems related to ..."
Abstract

Cited by 290 (23 self)
 Add to MetaCart
Summary. The article includes: theorems related to domains, theorems related to Cartesian products presented earlier in various articles and simplified here by substituting domains for sets and omitting the assumption that the sets involved must not be empty. Several schemes and theorems related to Fraenkel operator are given. We also redefine subset yielding functions such as the pair of elements of a set and the union of two subsets of a set.
Tuples, projections and Cartesian products
 Journal of Formalized Mathematics
, 1989
"... Summary. The purpose of this article is to define projections of ordered pairs, and to introduce triples and quadruples, and their projections. The theorems in this paper may be roughly divided into two groups: theorems describing basic properties of introduced concepts and theorems related to the r ..."
Abstract

Cited by 267 (39 self)
 Add to MetaCart
Summary. The purpose of this article is to define projections of ordered pairs, and to introduce triples and quadruples, and their projections. The theorems in this paper may be roughly divided into two groups: theorems describing basic properties of introduced concepts and theorems related to the regularity, analogous to those proved for ordered pairs by Cz. Byliński [1]. Cartesian products of subsets are redefined as subsets of Cartesian products.