Results 1  10
of
40
A Tutorial on (Co)Algebras and (Co)Induction
 EATCS Bulletin
, 1997
"... . Algebraic structures which are generated by a collection of constructors like natural numbers (generated by a zero and a successor) or finite lists and trees are of wellestablished importance in computer science. Formally, they are initial algebras. Induction is used both as a definition pr ..."
Abstract

Cited by 228 (34 self)
 Add to MetaCart
. Algebraic structures which are generated by a collection of constructors like natural numbers (generated by a zero and a successor) or finite lists and trees are of wellestablished importance in computer science. Formally, they are initial algebras. Induction is used both as a definition principle, and as a proof principle for such structures. But there are also important dual "coalgebraic" structures, which do not come equipped with constructor operations but with what are sometimes called "destructor" operations (also called observers, accessors, transition maps, or mutators). Spaces of infinite data (including, for example, infinite lists, and nonwellfounded sets) are generally of this kind. In general, dynamical systems with a hidden, blackbox state space, to which a user only has limited access via specified (observer or mutator) operations, are coalgebras of various kinds. Such coalgebraic systems are common in computer science. And "coinduction" is the appropriate te...
A Fold for All Seasons
 IN PROC. CONFERENCE ON FUNCTIONAL PROGRAMMING LANGUAGES AND COMPUTER ARCHITECTURE
, 1993
"... Generic control operators, such as fold, can be generated from algebraic type definitions. The class of types to which these techniques are applicable is generalized to all algebraic types definable in languages such as Miranda and ML, i.e. mutually recursive sumsofproducts with tuples and functio ..."
Abstract

Cited by 113 (15 self)
 Add to MetaCart
Generic control operators, such as fold, can be generated from algebraic type definitions. The class of types to which these techniques are applicable is generalized to all algebraic types definable in languages such as Miranda and ML, i.e. mutually recursive sumsofproducts with tuples and function types. Several other useful generic operators, also applicable to every type in this class, also are described. A normalization algorithm which automatically calculates improvements to programs expressed in a language based upon folds is described. It reduces programs, expressed using fold as the exclusive control operator, to a canonical form. Based upon a generic promotion theorem, the algorithm is facilitated by the explicit structure of fold programs rather than using an analysis phase to search for implicit structure. Canonical programs are minimal in the sense that they contain the fewest number of fold operations. Because of this property, the normalization algorithm has important ...
Objects and Classes, Coalgebraically
 ObjectOrientation with Parallelism and Persistence
, 1995
"... The coalgebraic perspective on objects and classes in objectoriented programming is elaborated: objects consist of a (unique) identifier, a local state, and a collection of methods described as a coalgebra; classes are coalgebraic (behavioural) specifications of objects. The creation of a "new" o ..."
Abstract

Cited by 68 (17 self)
 Add to MetaCart
The coalgebraic perspective on objects and classes in objectoriented programming is elaborated: objects consist of a (unique) identifier, a local state, and a collection of methods described as a coalgebra; classes are coalgebraic (behavioural) specifications of objects. The creation of a "new" object of a class is described in terms of the terminal coalgebra satisfying the specification. We present a notion of "totally specified" class, which leads to particularly simple terminal coalgebras. We further describe local and global operational semantics for objects. Associated with the local operational semantics is a notion of bisimulation (for objects belonging to the same class), expressing observational indistinguishability. AMS Subject Classification (1991): 18C10, 03G30 CR Subject Classification (1991): D.1.5, D.2.1, E.1, F.1.1, F.3.0 Keywords & Phrases: object, class, (terminal) coalgebra, coalgebraic specification, bisimulation 1. Introduction Within the objectoriente...
Structural Induction and Coinduction in a Fibrational Setting
 Information and Computation
, 1997
"... . We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for in ..."
Abstract

Cited by 67 (14 self)
 Add to MetaCart
. We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for initial algebras is admissible, and dually, in the presence of quotient types, the coinduction principle for terminal coalgebras is admissible. After giving an alternative formulation of induction in terms of binary relations, we combine both principles and obtain a mixed induction/coinduction principle which allows us to reason about minimal solutions X = oe(X) where X may occur both positively and negatively in the type constructor oe. We further strengthen these logical principles to deal with contexts and prove that such strengthening is valid when the (abstract) logic we consider is contextually/functionally complete. All the main results follow from a basic result about adjunc...
Shapely Types and Shape Polymorphism
 Programming Languages and Systems  ESOP '94: 5th European Symposium on Programming
, 1994
"... . Shapely types separate data, represented by lists, from shape, or structure. This separation supports shape polymorphism, where operations are defined for arbitrary shapes, and shapely operations, for which the shape of the result is determined by that of the input, permitting static shape checkin ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
. Shapely types separate data, represented by lists, from shape, or structure. This separation supports shape polymorphism, where operations are defined for arbitrary shapes, and shapely operations, for which the shape of the result is determined by that of the input, permitting static shape checking. They include both arrays and the usual algebraic types (of trees, graphs, etc.), and are closed under the formation of initial algebras. 1 Introduction Consider the operation map which applies a function to each element of a list. In existing functional languages, its type is (ff!fi)!ff list!fi list where ff and fi may range over any types. This data polymorphism allows the data (ff and fi) to vary, but uses a fixed shape, list. Shape polymorphism fixes the data, but allows the shape to vary, so that, for types A and B, instances of map include (A!B)!A tree!B tree and (A!B)!A matrix!B matrix In each case map(f) applies f to the data (the leaves or entries), while leaving the shape fi...
Dealing with Large Bananas
 Universiteit Utrecht
, 2000
"... Abstract. Many problems call for a mixture of generic and speci c programming techniques. We propose a polytypic programming approach based on generalised (monadic) folds where a separation is made between basic fold algebras that model generic behaviour and updates on these algebras that model spec ..."
Abstract

Cited by 29 (12 self)
 Add to MetaCart
Abstract. Many problems call for a mixture of generic and speci c programming techniques. We propose a polytypic programming approach based on generalised (monadic) folds where a separation is made between basic fold algebras that model generic behaviour and updates on these algebras that model speci c behaviour. We identify particular basic algebras as well as some algebra combinators, and we show how these facilitate structured programming with updatable fold algebras. This blend of genericity and speci city allows programming with folds to scale up to applications involving large systems of mutually recursive datatypes. Finally, we address the possibility of providing generic de nitions for the functions, algebras, and combinators that we propose. 1
Software Design for Reliability and Reuse  A ProofOfConcept Demonstration
 IN CONFERENCE ON TRIADA ’94
, 1994
"... The Pacific Software Research Center is developing a new method to support reuse and introduce reliability into software. The method is based on design capture in domain specific design languages and automatic program generation using a reusable suite of program transformation tools. The transformat ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
The Pacific Software Research Center is developing a new method to support reuse and introduce reliability into software. The method is based on design capture in domain specific design languages and automatic program generation using a reusable suite of program transformation tools. The transformation tools, and a domain specific component generator incorporating them, are being implemented as part of a major project underway at the Oregon Graduate Institute of Science and Technology. The processes used in tool development and application of the method are being captured. Once completed, an experiment will be performed on the generator to assess its usability and flexibility. This paper describes the Software Design for Reliability and Reuse method and illustrates its application to the Message Translation and Validation domain, a problem identified by our sponsors so that our method can be compared directly to a previously existing stateoftheart solution based on code templates pr...
Components as processes: An exercise in coalgebraic modeling
 FMOODS’2000  Formal Methods for Open ObjectOriented Distributed Systems
, 2000
"... Abstract Software components, arising, typically, in systems ’ analysis and design, are characterized by a public interface and a private encapsulated state. They persist (and evolve) in time, according to some behavioural patterns. This paper is an exercise in modeling such components as coalgebras ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
Abstract Software components, arising, typically, in systems ’ analysis and design, are characterized by a public interface and a private encapsulated state. They persist (and evolve) in time, according to some behavioural patterns. This paper is an exercise in modeling such components as coalgebras for some kinds of endofunctors on ¢¡¤ £ , capturing both (interface) types and behavioural aspects. The construction of component categories, cofibred over the interface space, emerges by generalizing the usual notion of a coalgebra morphism. A collection of composition operators as well as a generic notion of bisimilarity, are discussed.
Type Parametric Programming
, 1993
"... We introduce a new abstraction mechanism, type parametric combinators, which supports abstraction over type constructors defined by datatype declarations found in functional languages such as Miranda, Haskell, and ML. This mechanism allows the definition and use of high level abstractions not pos ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
We introduce a new abstraction mechanism, type parametric combinators, which supports abstraction over type constructors defined by datatype declarations found in functional languages such as Miranda, Haskell, and ML. This mechanism allows the definition and use of high level abstractions not possible in traditional languages and could be used to define user programmable derived instance declarations for type classes in Haskel. We illustrate its use in an actual programming language by giving examples in the ML dialect CRML.
Representations of First Order Function Types as Terminal Coalgebras
 In Typed Lambda Calculi and Applications, TLCA 2001, number 2044 in Lecture Notes in Computer Science
, 2001
"... terminal coalgebras ..."