Results 1  10
of
366
Evolutionary games on graphs
, 2007
"... Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in nonequilibrium statistical physics. This review gives a tutorialtype overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by nonmeanfieldtype social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner’s Dilemma, the Rock–Scissors–Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.
Paradoxes Of Randomness
, 2002
"... I'll discuss how Godel's paradox "This statement is false/unprovable" yields his famous result on the limits of axiomatic reasoning. I'll contrast that with my work, which is based on the paradox of "The first uninteresting positive whole number," which is itself a rather interesting number, sinc ..."
Abstract

Cited by 46 (9 self)
 Add to MetaCart
I'll discuss how Godel's paradox "This statement is false/unprovable" yields his famous result on the limits of axiomatic reasoning. I'll contrast that with my work, which is based on the paradox of "The first uninteresting positive whole number," which is itself a rather interesting number, since it is precisely the first uninteresting number. This leads to my first result on the limits of axiomatic reasoning, namely that most numbers are uninteresting or random, but we can never be sure, we can never prove it, in individual cases. And these ideas culminate in my discovery that some mathematical facts are true for no reason, they are true by accident, or at random. In other words, God not only plays dice in physics, but even in pure mathematics, in logic, in the world of pure reason. Sometimes mathematical truth is completely random and has no structure or pattern that we will ever be able to understand. It is not the case that simple clear questions have simple clear answers, not even in the world of pure ideas, and much less so in the messy real world of everyday life.
Evolutionary computation in structural design
 Journal of Engineering with Computers
, 2001
"... Evolutionary computation is emerging as a new engineering computational paradigm, which may significantly change the present structural design practice. For this reason, an extensive study of evolutionary computation in the context of structural design has been conducted in the Information Technolog ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
Evolutionary computation is emerging as a new engineering computational paradigm, which may significantly change the present structural design practice. For this reason, an extensive study of evolutionary computation in the context of structural design has been conducted in the Information Technology and Engineering School at George Mason University and its results are reported here. First, a general introduction to evolutionary computation is presented and recent developments in this field are briefly described. Next, the field of evolutionary design is introduced and its relevance to structural design is explained. Further, the issue of creativity/novelty is discussed and possible ways of achieving it during a structural design process are suggested. Current research progress in building engineering systems ’ representations, one of the key issues in evolutionary design, is subsequently discussed. Next, recent developments in constrainthandling methods in evolutionary optimization are reported. Further, the rapidly growing field of evolutionary multiobjective optimization is presented and briefly described. An emerging subfield of coevolutionary design is subsequently introduced and its current advancements reported. Next, a comprehensive review of the applications of evolutionary computation in structural design is provided and chronologically classified. Finally, a summary of the current research status and a discussion on the most promising paths of future research are also presented.
Multilinear Formulas and Skepticism of Quantum Computing
 In Proc. ACM STOC
, 2004
"... Several researchers, including Leonid Levin, Gerard 't Hooft, and Stephen Wolfram, have argued that quantum mechanics will break down before the factoring of large numbers becomes possible. If this is true, then there should be a natural "Sure/Shor separator"that is, a set of quantum states tha ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
Several researchers, including Leonid Levin, Gerard 't Hooft, and Stephen Wolfram, have argued that quantum mechanics will break down before the factoring of large numbers becomes possible. If this is true, then there should be a natural "Sure/Shor separator"that is, a set of quantum states that can account for all experiments performed to date, but not for Shor's factoring algorithm. We propose as a candidate the set of states expressible by a polynomial number of additions and tensor products. Using a recent lower bound on multilinear formula size due to Raz, we then show that states arising in quantum errorcorrection require n## additions and tensor products even to approximate, which incidentally yields the first superpolynomial gap between general and multilinear formula size of functions. More broadly, we introduce a complexity classification of pure quantum states, and prove many basic facts about this classification. Our goal is to refine vague ideas about a breakdown of quantum mechanics into specific hypotheses that might be experimentally testable in the near future.
The Many Facets of Natural Computing
"... related. I am confident that at their interface great discoveries await those who seek them. ” (L.Adleman, [3]) 1. FOREWORD Natural computing is the field of research that investigates models and computational techniques inspired by nature and, dually, attempts to understand the world around us in t ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
related. I am confident that at their interface great discoveries await those who seek them. ” (L.Adleman, [3]) 1. FOREWORD Natural computing is the field of research that investigates models and computational techniques inspired by nature and, dually, attempts to understand the world around us in terms of information processing. It is a highly interdisciplinary field that connects the natural sciences with computing science, both at the level of information technology and at the level of fundamental research, [98]. As a matter of fact, natural computing areas and topics come in many flavours, including pure theoretical research, algorithms and software applications, as well as biology, chemistry and physics experimental laboratory research. In this review we describe computing paradigms abstracted
The emergence of hierarchy in transportation networks
 Annals of Regional Science
, 2005
"... A transportation network is a complex system that exhibits the properties of selforganization and emergence. Previous research in dynamics related to transportation networks focuses on traffic assignment or traffic management. This research concentrates on the dynamics of the orientation of major ro ..."
Abstract

Cited by 25 (16 self)
 Add to MetaCart
A transportation network is a complex system that exhibits the properties of selforganization and emergence. Previous research in dynamics related to transportation networks focuses on traffic assignment or traffic management. This research concentrates on the dynamics of the orientation of major roads in a network and abstractly models these dynamics to understand the basic properties of transportation networks. A model is developed to capture the dynamics that leads to a hierarchical arrangement of roads for a given network structure and land use distribution. Localized investment rules – revenue produced by traffic on a link is invested for that link’s own development – are employed. Under reasonable parameters, these investment rules, coupled with traveler behavior, and underlying network topology result in the emergence of a hierarchical pattern. Hypothetical networks subject to certain conditions are tested with this model to explore the network properties. Though hierarchies seem to be designed by planners and engineers, the results show that they are intrinsic properties of networks. Also, the results show that roads, specific routes with continuous attributes, are emergent properties of transportation networks.
From Content to context: videogames as designed experience
 Educational Researcher
, 2006
"... Interactive immersive entertainment, or videogame playing, has emerged as a major entertainment and educational medium. As research and development initiatives proliferate, educational researchers might benefit by developing more grounded theories about them. This article argues for framing game pla ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
Interactive immersive entertainment, or videogame playing, has emerged as a major entertainment and educational medium. As research and development initiatives proliferate, educational researchers might benefit by developing more grounded theories about them. This article argues for framing game play as a designed experience. Players ’ understandings are developed through cycles of performance within the gameworlds, which instantiate particular theories of the world (ideological worlds). Players develop new identities both through game play and through the gaming communities in which these identities are enacted. Thus research that examines gamebased learning needs to account for both kinds of interactions within the gameworld and in broader social contexts. Examples from curriculum developed for Civilization III and Supercharged! show how games can communicate powerful ideas and open new identity trajectories for learners.
Pcompleteness of cellular automaton Rule 110
 In International Colloquium on Automata Languages and Programming (ICALP), volume 4051 of LNCS
, 2006
"... We show that the problem of predicting t steps of the 1D cellular automaton Rule 110 is Pcomplete. The result is found by showing that Rule 110 simulates deterministic Turing machines in polynomial time. As a corollary we find that the small universal Turing machines of Mathew Cook run in polyn ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
We show that the problem of predicting t steps of the 1D cellular automaton Rule 110 is Pcomplete. The result is found by showing that Rule 110 simulates deterministic Turing machines in polynomial time. As a corollary we find that the small universal Turing machines of Mathew Cook run in polynomial time, this is an exponential improvement on their previously known simulation time overhead.
On Cellular Automaton Approaches to Modeling Biological Cells
 In IMA Mathematical Systems Theory in Biology, Communication, and Finance
, 2002
"... We discuss two di#erent types of Cellular Automata (CA): latticegasbased cellular automata (LGCA) and the cellular Potts model (CPM), and describe their applications in biological modeling. ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
We discuss two di#erent types of Cellular Automata (CA): latticegasbased cellular automata (LGCA) and the cellular Potts model (CPM), and describe their applications in biological modeling.
Complex systems: Network thinking
 Artificial Intelligence
, 2006
"... (To appear in Artificial Intelligence.) I am convinced that the nations and people who master the new sciences of complexity will become the economic, cultural, and political superpowers of the next century. —Heinz Pagels [50] When I hear the word “complexity, ” I don’t exactly reach for my hammer, ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
(To appear in Artificial Intelligence.) I am convinced that the nations and people who master the new sciences of complexity will become the economic, cultural, and political superpowers of the next century. —Heinz Pagels [50] When I hear the word “complexity, ” I don’t exactly reach for my hammer, but I suspect my eyes narrow. It has the dangerous allure of an incantation, threatening to acquire the same blithe explanatory role that “adaptation ” once did in biology. —Philip Ball [1] 1