Results 1  10
of
54
Pseudorandom generators without the XOR Lemma
, 1998
"... Madhu Sudan y Luca Trevisan z Salil Vadhan x Abstract Impagliazzo and Wigderson [IW97] have recently shown that if there exists a decision problem solvable in time 2 O(n) and having circuit complexity 2 n) (for all but finitely many n) then P = BPP. This result is a culmination of a serie ..."
Abstract

Cited by 130 (21 self)
 Add to MetaCart
Madhu Sudan y Luca Trevisan z Salil Vadhan x Abstract Impagliazzo and Wigderson [IW97] have recently shown that if there exists a decision problem solvable in time 2 O(n) and having circuit complexity 2 n) (for all but finitely many n) then P = BPP. This result is a culmination of a series of works showing connections between the existence of hard predicates and the existence of good pseudorandom generators. The construction of Impagliazzo and Wigderson goes through three phases of "hardness amplification" (a multivariate polynomial encoding, a first derandomized XOR Lemma, and a second derandomized XOR Lemma) that are composed with the Nisan Wigderson [NW94] generator. In this paper we present two different approaches to proving the main result of Impagliazzo and Wigderson. In developing each approach, we introduce new techniques and prove new results that could be useful in future improvements and/or applications of hardnessrandomness tradeoffs. Our first result is that when (a modified version of) the NisanWigderson generator construction is applied with a "mildly" hard predicate, the result is a generator that produces a distribution indistinguishable from having large minentropy. An extractor can then be used to produce a distribution computationally indistinguishable from uniform. This is the first construction of a pseudorandom generator that works with a mildly hard predicate without doing hardness amplification. We then show that in the ImpagliazzoWigderson construction only the first hardnessamplification phase (encoding with multivariate polynomial) is necessary, since it already gives the required averagecase hardness. We prove this result by (i) establishing a connection between the hardnessamplification problem and a listdecoding...
Simple Extractors for All MinEntropies and a New PseudoRandom Generator
 Journal of the ACM
, 2001
"... A “randomness extractor ” is an algorithm that given a sample from a distribution with sufficiently high minentropy and a short random seed produces an output that is statistically indistinguishable from uniform. (Minentropy is a measure of the amount of randomness in a distribution). We present a ..."
Abstract

Cited by 113 (30 self)
 Add to MetaCart
A “randomness extractor ” is an algorithm that given a sample from a distribution with sufficiently high minentropy and a short random seed produces an output that is statistically indistinguishable from uniform. (Minentropy is a measure of the amount of randomness in a distribution). We present a simple, selfcontained extractor construction that produces good extractors for all minentropies. Our construction is algebraic and builds on a new polynomialbased approach introduced by TaShma, Zuckerman, and Safra [TSZS01]. Using our improvements, we obtain, for example, an extractor with output length m = k/(log n) O(1/α) and seed length (1 + α) log n for an arbitrary 0 < α ≤ 1, where n is the input length, and k is the minentropy of the input distribution. A “pseudorandom generator ” is an algorithm that given a short random seed produces a long output that is computationally indistinguishable from uniform. Our technique also gives a new way to construct pseudorandom generators from functions that require large circuits. Our pseudorandom generator construction is not based on the NisanWigderson generator [NW94], and turns worstcase hardness directly into pseudorandomness. The parameters of our generator match those in [IW97, STV01] and in particular are strong enough to obtain a new proof that P = BP P if E requires exponential size circuits.
Simulating BPP Using a General Weak Random Source
 ALGORITHMICA
, 1996
"... We show how to simulate BPP and approximation algorithms in polynomial time using the output from a ffisource. A ffisource is a weak random source that is asked only once for R bits, and must output an Rbit string according to some distribution that places probability no more than 2 \GammaffiR on ..."
Abstract

Cited by 110 (18 self)
 Add to MetaCart
We show how to simulate BPP and approximation algorithms in polynomial time using the output from a ffisource. A ffisource is a weak random source that is asked only once for R bits, and must output an Rbit string according to some distribution that places probability no more than 2 \GammaffiR on any particular string. We also give an application to the unapproximability of Max Clique.
Extractors and Pseudorandom Generators
 Journal of the ACM
, 1999
"... We introduce a new approach to constructing extractors. Extractors are algorithms that transform a "weakly random" distribution into an almost uniform distribution. Explicit constructions of extractors have a variety of important applications, and tend to be very difficult to obtain. ..."
Abstract

Cited by 92 (5 self)
 Add to MetaCart
We introduce a new approach to constructing extractors. Extractors are algorithms that transform a "weakly random" distribution into an almost uniform distribution. Explicit constructions of extractors have a variety of important applications, and tend to be very difficult to obtain.
Extracting Randomness: A Survey and New Constructions
, 1999
"... this paper we do two things. First, we survey extractors and dispersers: what they are, how they can be designed, and some of their applications. The work described in the survey is due to a long list of research papers by various authors##most notably by David Zuckerman. Then, we present a new tool ..."
Abstract

Cited by 90 (5 self)
 Add to MetaCart
this paper we do two things. First, we survey extractors and dispersers: what they are, how they can be designed, and some of their applications. The work described in the survey is due to a long list of research papers by various authors##most notably by David Zuckerman. Then, we present a new tool for constructing explicit extractors and give two new constructions that greatly improve upon previous results. The new tool we devise, a merger," is a function that accepts d strings, one of which is uniformly distributed and outputs a single string that is guaranteed to be uniformly distributed. We show how to build good explicit mergers, and how mergers can be used to build better extractors. Using this, we present two new constructions. The first construction succeeds in extracting all of the randomness from any somewhat random source. This improves upon previous extractors that extract only some of the randomness from somewhat random sources with enough" randomness. The amount of truly random bits used by this extractor, however, is not optimal. The second extractor we build extracts only some of the randomness and works only for sources with enough randomness, but uses a nearoptimal amount of truly random bits. Extractors and dispersers have many applications in removing randomness" in various settings and in making randomized constructions explicit. We survey some of these applications and note whenever our new constructions yield better results, e.g., plugging our new extractors into a previous construction we achieve the first explicit Nsuperconcentrators of linear size and polyloglog(N) depth. ] 1999 Academic Press CONTENTS 1.
Expanders that Beat the Eigenvalue Bound: Explicit Construction and Applications
 Combinatorica
, 1993
"... For every n and 0 ! ffi ! 1, we construct graphs on n nodes such that every two sets of size n ffi share an edge, having essentially optimal maximum degree n 1\Gammaffi+o(1) . Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n 1+1=k ..."
Abstract

Cited by 90 (27 self)
 Add to MetaCart
For every n and 0 ! ffi ! 1, we construct graphs on n nodes such that every two sets of size n ffi share an edge, having essentially optimal maximum degree n 1\Gammaffi+o(1) . Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n 1+1=k+o(1) comparisons. 2. A k round selection algorithm using n 1+1=(2 k \Gamma1)+o(1) comparisons. 3. A depth 2 superconcentrator of size n 1+o(1) . 4. A depth k widesense nonblocking generalized connector of size n 1+1=k+o(1) . All of these results improve on previous constructions by factors of n\Omega\Gamma37 , and are optimal to within factors of n o(1) . These results are based on an improvement to the extractor construction of Nisan & Zuckerman: our algorithm extracts an asymptotically optimal number of random bits from a defective random source using a small additional number of truly random bits. 1
Lossless condensers, unbalanced expanders, and extractors
 In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
, 2001
"... Abstract Trevisan showed that many pseudorandom generator constructions give rise to constructionsof explicit extractors. We show how to use such constructions to obtain explicit lossless condensers. A lossless condenser is a probabilistic map using only O(log n) additional random bitsthat maps n bi ..."
Abstract

Cited by 89 (20 self)
 Add to MetaCart
Abstract Trevisan showed that many pseudorandom generator constructions give rise to constructionsof explicit extractors. We show how to use such constructions to obtain explicit lossless condensers. A lossless condenser is a probabilistic map using only O(log n) additional random bitsthat maps n bits strings to poly(log K) bit strings, such that any source with support size Kis mapped almost injectively to the smaller domain. Our construction remains the best lossless condenser to date.By composing our condenser with previous extractors, we obtain new, improved extractors. For small enough minentropies our extractors can output all of the randomness with only O(log n) bits. We also obtain a new disperser that works for every entropy loss, uses an O(log n)bit seed, and has only O(log n) entropy loss. This is the best disperser construction to date,and yields other applications. Finally, our lossless condenser can be viewed as an unbalanced
Extracting all the Randomness and Reducing the Error in Trevisan's Extractors
 In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
, 1999
"... We give explicit constructions of extractors which work for a source of any minentropy on strings of length n. These extractors can extract any constant fraction of the minentropy using O(log² n) additional random bits, and can extract all the minentropy using O(log³ n) additional rando ..."
Abstract

Cited by 80 (17 self)
 Add to MetaCart
We give explicit constructions of extractors which work for a source of any minentropy on strings of length n. These extractors can extract any constant fraction of the minentropy using O(log² n) additional random bits, and can extract all the minentropy using O(log³ n) additional random bits. Both of these constructions use fewer truly random bits than any previous construction which works for all minentropies and extracts a constant fraction of the minentropy. We then improve our second construction and show that we can reduce the entropy loss to 2 log(1=") +O(1) bits, while still using O(log³ n) truly random bits (where entropy loss is defined as [(source minentropy) + (# truly random bits used) (# output bits)], and " is the statistical difference from uniform achieved). This entropy loss is optimal up to a constant additive term. our...
Unbalanced expanders and randomness extractors from parvareshvardy codes
 In Proceedings of the 22nd Annual IEEE Conference on Computational Complexity
, 2007
"... We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of righthand vertices are polynomially close to optimal, whereas the previous ..."
Abstract

Cited by 78 (7 self)
 Add to MetaCart
We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of righthand vertices are polynomially close to optimal, whereas the previous constructions of TaShma, Umans, and Zuckerman (STOC ‘01) required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and selfcontained description and analysis, based on the ideas underlying the recent listdecodable errorcorrecting codes of Parvaresh and Vardy (FOCS ‘05). Our expanders can be interpreted as nearoptimal “randomness condensers, ” that reduce the task of extracting randomness from sources of arbitrary minentropy rate to extracting randomness from sources of minentropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. (STOC ‘03) and improving upon it when the error parameter is small (e.g. 1/poly(n)).
ExposureResilient Functions and AllOrNothing Transforms
, 2000
"... We study the problem of partial key exposure. Standard cryptographic de nitions and constructions do not guarantee any security even if a tiny fraction of the secret key is compromised. We show how to build cryptographic primitives that remain secure even when an adversary is able to learn almo ..."
Abstract

Cited by 61 (11 self)
 Add to MetaCart
We study the problem of partial key exposure. Standard cryptographic de nitions and constructions do not guarantee any security even if a tiny fraction of the secret key is compromised. We show how to build cryptographic primitives that remain secure even when an adversary is able to learn almost all of the secret key.