Results 1  10
of
58
Expander Graphs and their Applications
, 2003
"... Contents 1 The Magical Mystery Tour 7 1.1 Some Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Hardness results for linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Error Correcting Codes . . . . . . . ..."
Abstract

Cited by 188 (5 self)
 Add to MetaCart
Contents 1 The Magical Mystery Tour 7 1.1 Some Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Hardness results for linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Derandomizing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Magical Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 A Super Concentrator with O(n) edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.3 Derandomizing Random Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The PCP theorem by gap amplification
 In Proceedings of the ThirtyEighth Annual ACM Symposium on Theory of Computing
, 2006
"... The PCP theorem [3, 2] says that every language in NP has a witness format that can be checked probabilistically by reading only a constant number of bits from the proof. The celebrated equivalence of this theorem and inapproximability of certain optimization problems, due to [12], has placed the PC ..."
Abstract

Cited by 128 (9 self)
 Add to MetaCart
The PCP theorem [3, 2] says that every language in NP has a witness format that can be checked probabilistically by reading only a constant number of bits from the proof. The celebrated equivalence of this theorem and inapproximability of certain optimization problems, due to [12], has placed the PCP theorem at the heart of the area of inapproximability. In this work we present a new proof of the PCP theorem that draws on this equivalence. We give a combinatorial proof for the NPhardness of approximating a certain constraint satisfaction problem, which can then be reinterpreted to yield the PCP theorem. Our approach is to consider the unsat value of a constraint system, which is the smallest fraction of unsatisfied constraints, ranging over all possible assignments for the underlying variables. We describe a new combinatorial amplification transformation that doubles the unsatvalue of a constraintsystem, with only a linear blowup in the size of the system. The amplification step causes an increase in alphabetsize that is corrected by a (standard) PCP composition step. Iterative application of these two steps yields a proof for the PCP theorem. The amplification lemma relies on a new notion of “graph powering ” that can be applied to systems of binary constraints. This powering amplifies the unsatvalue of a constraint system provided that the underlying graph structure is an expander. We also extend our amplification lemma towards construction of assignment testers (alternatively, PCPs of Proximity) which are slightly stronger objects than PCPs. We then construct PCPs and locallytestable codes whose length is linear up to a polylog factor, and whose correctness can be probabilistically verified by making a constant number of queries. Namely, we prove SAT ∈
Reductions in Streaming Algorithms, with an Application to Counting Triangles in Graphs
"... We introduce reductions in the streaming model as a tool in the design of streaming algorithms. We develop the concept of listefficient streaming algorithms that are essential to the design of efficient streaming algorithms through reductions. Our results include a suite of listefficient streaming ..."
Abstract

Cited by 116 (5 self)
 Add to MetaCart
We introduce reductions in the streaming model as a tool in the design of streaming algorithms. We develop the concept of listefficient streaming algorithms that are essential to the design of efficient streaming algorithms through reductions. Our results include a suite of listefficient streaming algorithms for basic statistical primitives. Using the reduction paradigm along with these tools, we design streaming algorithms for approximately counting the number of triangles in a graph presented as a stream. A specific highlight of our work is the first algorithm for the number of distinct elements in a data stream that achieves arbitrary approximation factors. (Independently, Trevisan [Tre01] has solved this problem via a different approach; our algorithm has the advantage of being listefficient.)
Robust PCPs of Proximity, Shorter PCPs and Applications to Coding
 in Proc. 36th ACM Symp. on Theory of Computing
, 2004
"... We continue the study of the tradeo between the length of PCPs and their query complexity, establishing the following main results (which refer to proofs of satis ability of circuits of size n): 1. We present PCPs of length exp( ~ O(log log n) ) n that can be veri ed by making o(log log n) ..."
Abstract

Cited by 80 (25 self)
 Add to MetaCart
We continue the study of the tradeo between the length of PCPs and their query complexity, establishing the following main results (which refer to proofs of satis ability of circuits of size n): 1. We present PCPs of length exp( ~ O(log log n) ) n that can be veri ed by making o(log log n) Boolean queries.
Compact Proofs of Retrievability
, 2008
"... In a proofofretrievability system, a data storage center must prove to a verifier that he is actually storing all of a client’s data. The central challenge is to build systems that are both efficient and provably secure — that is, it should be possible to extract the client’s data from any prover ..."
Abstract

Cited by 72 (0 self)
 Add to MetaCart
In a proofofretrievability system, a data storage center must prove to a verifier that he is actually storing all of a client’s data. The central challenge is to build systems that are both efficient and provably secure — that is, it should be possible to extract the client’s data from any prover that passes a verification check. All previous provably secure solutions require that a prover send O(l) authenticator values (i.e., MACs or signatures) to verify a file, for a total of O(l 2) bits of communication, where l is the security parameter. The extra cost over the ideal O(l) communication can be prohibitive in systems where a verifier needs to check many files. We create the first compact and provably secure proof of retrievability systems. Our solutions allow for compact proofs with just one authenticator value — in practice this can lead to proofs with as little as 40 bytes of communication. We present two solutions with similar structure. The first one is privately verifiable and builds elegantly on pseudorandom functions (PRFs); the second allows for publicly verifiable proofs and is built from the signature scheme of Boneh, Lynn, and Shacham in bilinear groups. Both solutions rely on homomorphic properties to aggregate a proof into one small authenticator value. 1
On Constructing Locally Computable Extractors and Cryptosystems In The Bounded Storage Model
 Journal of Cryptology
, 2002
"... We consider the problem of constructing randomness extractors which are locally computable, i.e. only read a small number of bits from their input. As recently shown by Lu (CRYPTO `02 ), locally computable extractors directly yield secure privatekey cryptosystems in Maurer's bounded storage mode ..."
Abstract

Cited by 69 (7 self)
 Add to MetaCart
We consider the problem of constructing randomness extractors which are locally computable, i.e. only read a small number of bits from their input. As recently shown by Lu (CRYPTO `02 ), locally computable extractors directly yield secure privatekey cryptosystems in Maurer's bounded storage model (J. Cryptology, 1992).
Extractors: Optimal up to Constant Factors
 STOC'03
, 2003
"... This paper provides the first explicit construction of extractors which are simultaneously optimal up to constant factors in both seed length and output length. More precisely, for every n, k, our extractor uses a random seed of length O(log n) to transform any random source on n bits with (min)ent ..."
Abstract

Cited by 51 (12 self)
 Add to MetaCart
This paper provides the first explicit construction of extractors which are simultaneously optimal up to constant factors in both seed length and output length. More precisely, for every n, k, our extractor uses a random seed of length O(log n) to transform any random source on n bits with (min)entropy k, into a distribution on (1 − α)k bits that is ɛclose to uniform. Here α and ɛ can be taken to be any positive constants. (In fact, ɛ can be almost polynomially small). Our improvements are obtained via three new techniques, each of which may be of independent interest. The first is a general construction of mergers [22] from locally decodable errorcorrecting codes. The second introduces new condensers that have constant seed length (and retain a constant fraction of the minentropy in the random source). The third is a way to augment the “winwin repeated condensing” paradigm of [17] with error reduction techniques like [15] so that the our constant seedlength condensers can be used without error accumulation.
Simple PCPs with Polylog Rate and Query Complexity
, 2005
"... We give constructions of probabilistically checkable proofs (PCPs) of length n·poly(log n) (to prove satisfiability of circuits of size n) that can verified by querying poly(log n) bits of the proof. We also give constructions of locally testable codes (LTCs) with similar parameters. Previous constr ..."
Abstract

Cited by 47 (15 self)
 Add to MetaCart
We give constructions of probabilistically checkable proofs (PCPs) of length n·poly(log n) (to prove satisfiability of circuits of size n) that can verified by querying poly(log n) bits of the proof. We also give constructions of locally testable codes (LTCs) with similar parameters. Previous constructions of short PCPs (from [5] to [9]) relied extensively on properties of low degree multivariate polynomials. In contrast, our constructions rely on new problems and techniques revolving around the properties of codes based on high degree polynomials in one variable (also known as ReedSolomon codes). We show how to convert the problem of verifying the satisfaction of a circuit by a given assignment to the task of verifying that a given function is close to being a ReedSolomon codeword, i.e., a univariate polynomial of specified degree. This reduction is simpler than the corresponding steps in previous reductions, and gives a new alternative to using the popular “sumcheck protocol”. We then give a new PCP for the special task of proving that a function is close to being a ReedSolomon codeword. This step of the construction is by a selfcontained recursion, and the only ingredient needed in the analysis is the bivariate lowdegree test of Polischuk and Spielman [27]. Note that our constructions yield LTCs first, which are then converted to PCPs. In contrast, most recent constructions go in the opposite (and less natural) direction of getting LTCs from PCPs.
Weak Random Sources, Hitting Sets, and BPP Simulations
, 1998
"... We show how to simulate any BPP algorithm in polynomial time using a weak random source of r bits and minentropy r fl for any fl ? 0. This follows from a more general result about sampling with weak random sources. Our result matches an informationtheoretic lower bound and solves a question that ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
We show how to simulate any BPP algorithm in polynomial time using a weak random source of r bits and minentropy r fl for any fl ? 0. This follows from a more general result about sampling with weak random sources. Our result matches an informationtheoretic lower bound and solves a question that has been open for some years. The previous best results were a polynomial time simulation of RP [Saks, Srinivasan and Zhou 1995] and a quasipolynomial time simulation of BPP [TaShma 1996]. Departing significantly from previous related works, we do not use extractors; instead, we use the ORdisperser of [Saks, Srinivasan, and Zhou 1995] in combination with a tricky use of hitting sets borrowed from [Andreev, Clementi, and Rolim 1996]. AMS Subject Classification: 68Q10, 11K45. Key Words and Phrases: Derandomization, Imperfect Sources of Randomness, Hitting Sets, Randomized Computations, Expander Graphs. Abbreviated Title: BPP Simulations using Weak Random Sources. 1 Introduction Randomi...