Results 1  10
of
19
A Gröbner free alternative for polynomial system solving
 Journal of Complexity
, 2001
"... Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic ..."
Abstract

Cited by 80 (16 self)
 Add to MetaCart
Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the set of roots, its minimal polynomial and the parametrizations of the coordinates. Such a representation of the solutions has a long history which goes back to Leopold Kronecker and has been revisited many times in computer algebra. We introduce a new generation of probabilistic algorithms where all the computations use only univariate or bivariate polynomials. We give a new codification of the set of solutions of a positive dimensional algebraic variety relying on a new global version of Newton’s iterator. Roughly speaking the complexity of our algorithm is polynomial in some kind of degree of the system, in its height, and linear in the complexity of evaluation
When polynomial equation systems can be "solved" fast?
 IN PROC. 11TH INTERNATIONAL SYMPOSIUM APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERRORCORRECTING CODES, AAECC11
, 1995
"... We present a new method for solving symbolically zerodimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of an alternative data structure: arithmetic networks and straightline programs with FOR gates. For sequential time complexity measu ..."
Abstract

Cited by 60 (18 self)
 Add to MetaCart
We present a new method for solving symbolically zerodimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of an alternative data structure: arithmetic networks and straightline programs with FOR gates. For sequential time complexity measured by the size of these networks we obtain the following result: it is possible to solve any affine or toric zerodimensional equation system in nonuniform sequential time which is polynomial in the length of the input description and the "geometric degree " of the equation system. Here, the input is thought to be given by a straightline program (or alternatively in sparse representation), and the length of the input is measured by number of variables, degree of equations and size of the program (or sparsity of the equations). Geometric degree has to be adequately defined. It is always bounded by the algebraiccombinatoric "B'ezout number " of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric degree is much smaller than
Straightline programs in geometric elimination theory
 J. Pure Appl. Algebra
, 1998
"... Dedicated to Volker Strassen for his work on complexity We present a new method for solving symbolically zero–dimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of problem adapted data structures: arithmetic networks and straight–line prog ..."
Abstract

Cited by 56 (13 self)
 Add to MetaCart
Dedicated to Volker Strassen for his work on complexity We present a new method for solving symbolically zero–dimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of problem adapted data structures: arithmetic networks and straight–line programs. For sequential time complexity measured by network size we obtain the following result: it is possible to solve any affine or toric zero–dimensional equation system in non–uniform sequential time which is polynomial in the length of the input description and the “geometric degree ” of the equation system. Here, the input is thought to be given by a straight–line program (or alternatively in sparse representation), and the length of the input is measured by number of variables, degree of equations and size of the program (or sparsity of the equations). The geometric degree of the input system has to be adequately defined. It is always bounded by the algebraic–combinatoric “Bézout number ” of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric
Matrices in Elimination Theory
, 1997
"... The last decade has witnessed the rebirth of resultant methods as a powerful computational tool for variable elimination and polynomial system solving. In particular, the advent of sparse elimination theory and toric varieties has provided ways to exploit the structure of polynomials encountered in ..."
Abstract

Cited by 44 (16 self)
 Add to MetaCart
The last decade has witnessed the rebirth of resultant methods as a powerful computational tool for variable elimination and polynomial system solving. In particular, the advent of sparse elimination theory and toric varieties has provided ways to exploit the structure of polynomials encountered in a number of scientific and engineering applications. On the other hand, the Bezoutian reveals itself as an important tool in many areas connected to elimination theory and has its own merits, leading to new developments in effective algebraic geometry. This survey unifies the existing work on resultants, with emphasis on constructing matrices that generalize the classic matrices named after Sylvester, Bézout and Macaulay. The properties of the different matrix formulations are presented, including some complexity issues, with an emphasis on variable elimination theory. We compare toric resultant matrices to Macaulay's matrix and further conjecture the generalization of Macaulay's exact ratio...
Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case
 PROCEEDINGS OF THE 3RD CONFERENCE APPROXIMATION AND OPTIMIZATION IN THE CARIBBEAN, IN: APORTACIONES MATEMÁTICAS, MEXICAN SOCIETY OF MATHEMATICS
, 1998
"... The objective of this paper is to show how the recently proposed method by Giusti, Heintz, Morais, Morgenstern, Pardo [10] can be applied to a case of real polynomial equation solving. Our main result concerns the problem of finding one representative point for each connected component of a real bou ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
The objective of this paper is to show how the recently proposed method by Giusti, Heintz, Morais, Morgenstern, Pardo [10] can be applied to a case of real polynomial equation solving. Our main result concerns the problem of finding one representative point for each connected component of a real bounded smooth hypersurface. The algorithm in [10] yields a method for symbolically solving a zerodimensional polynomial equation system in the affine (and toric) case. Its main feature is the use of adapted data structure: Arithmetical networks and straightline programs. The algorithm solves any affine zerodimensional equation system in nonuniform sequential time that is polynomial in the length of the input description and an adequately defined affine degree of the equation system. Replacing the affine degree of the equation system by a suitably defined real degree of certain polar varieties associated to the input equation, which describes the hypersurface under consideration, and using straightline program codification of the input and intermediate results, we obtain a method for the problem introduced above that is polynomial in the input length and the real degree.
Sharp estimates for the arithmetic Nullstellensatz
 Duke Math. J
"... We present sharp estimates for the degree and the height of the polynomials in the Nullstellensatz over the integer ring Z. The result improves previous work of P. Philippon, C. Berenstein and A. Yger, and T. Krick and L. M. Pardo. We also present degree and height estimates of intrinsic type, which ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
We present sharp estimates for the degree and the height of the polynomials in the Nullstellensatz over the integer ring Z. The result improves previous work of P. Philippon, C. Berenstein and A. Yger, and T. Krick and L. M. Pardo. We also present degree and height estimates of intrinsic type, which depend mainly on the degree and the height of the input polynomial system. As an application we derive an effective arithmetic Nullstellensatz for sparse polynomial systems. The proof of these results relies heavily on the notion of local height of an affine
On the TimeSpace Complexity of Geometric Elimination Procedures
, 1999
"... In [25] and [22] a new algorithmic concept was introduced for the symbolic solution of a zero dimensional complete intersection polynomial equation system satisfying a certain generic smoothness condition. The main innovative point of this algorithmic concept consists in the introduction of a new ge ..."
Abstract

Cited by 23 (16 self)
 Add to MetaCart
In [25] and [22] a new algorithmic concept was introduced for the symbolic solution of a zero dimensional complete intersection polynomial equation system satisfying a certain generic smoothness condition. The main innovative point of this algorithmic concept consists in the introduction of a new geometric invariant, called the degree of the input system, and the proof that the most common elimination problems have time complexity which is polynomial in this degree and the length of the input.
Computing Parametric Geometric Resolutions
, 2001
"... Given a polynomial system of n equations in n unknowns that depends on some parameters, we de ne the notion of parametric geometric resolution as a means to represent some generic solutions in terms of the parameters. The coefficients of this resolution are rational functions of the parameters; we f ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
Given a polynomial system of n equations in n unknowns that depends on some parameters, we de ne the notion of parametric geometric resolution as a means to represent some generic solutions in terms of the parameters. The coefficients of this resolution are rational functions of the parameters; we first show that their degree is bounded by the Bézout number d n , where d is a bound on the degrees of the input system. We then present a probabilistic algorithm to compute such a resolution; in short, its complexity is polynomial in the size of the output and the probability of success is controlled by a quantity polynomial in the Bézout number. We present several applications of this process, to computations in the Jacobian of hyperelliptic curves and to questions of real geometry.
Bounds for the Hilbert function of polynomial ideals
 Impresiones Previas 91, Univ. Buenos Aires
, 1996
"... Abstract. We present a new effective Nullstellensatz with bounds for the degrees which depend not only on the number of variables and on the degrees of the input polynomials but also on an additional parameter called the geometric degree of the system of equations. The obtained bound is polynomial i ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Abstract. We present a new effective Nullstellensatz with bounds for the degrees which depend not only on the number of variables and on the degrees of the input polynomials but also on an additional parameter called the geometric degree of the system of equations. The obtained bound is polynomial in these parameters. It is essentially optimal in the general case, and it substantially improves the existent bounds in some special cases. The proof of this result is combinatorial, and it relies on global estimations for the Hilbert function of homogeneous polynomial ideals. In this direction, we obtain a lower bound for the Hilbert function of an arbitrary homogeneous polynomial ideal, and an upper bound for the Hilbert function of a generic hypersurface section of an unmixed radical polynomial ideal.
A New Algorithm for the Geometric Decomposition of a Variety
, 1999
"... In this article, we present a new method for computing the decomposition of a variety into irreducible components. It is based on a property of Bezoutian matrices, which allows us to compute a multiple of the Chow form of the isolated points of the variety and to deduce a rational representation of ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
In this article, we present a new method for computing the decomposition of a variety into irreducible components. It is based on a property of Bezoutian matrices, which allows us to compute a multiple of the Chow form of the isolated points of the variety and to deduce a rational representation of these points. This tools is used recursively to compute the irreducible components from the lowest to the highest dimension. The asymptotic complexity is of the same order than the best complexity bound known for this problem. Our approach provides a substantial simplification of the previous methods and yields bounds on the height of the polynomials involved in these representations. An implementation in maple of this algorithm is described at the end. In this paper, we present a new method for computing the decomposition of a variety into irreducible components. It is based on matrix formulations, and more specifically on Bezoutian matrices. This tool has many applications in several areas s...