Results 1  10
of
92
Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components
, 2001
"... In engineering and applied mathematics, polynomial systems arise whose solution sets contain components of different dimensions and multiplicities. In this article we present algorithms, based on homotopy continuation, that compute much of the geometric information contained in the primary decomposi ..."
Abstract

Cited by 58 (27 self)
 Add to MetaCart
In engineering and applied mathematics, polynomial systems arise whose solution sets contain components of different dimensions and multiplicities. In this article we present algorithms, based on homotopy continuation, that compute much of the geometric information contained in the primary decomposition of the solution set. In particular, ignoring multiplicities, our algorithms lay out the decomposition of the set of solutions into irreducible components, by finding, at each dimension, generic points on each component. As byproducts, the computation also determines the degree of each component and an upper bound on itsmultiplicity. The bound issharp (i.e., equal to one) for reduced components. The algorithms make essential use of generic projection and interpolation, and can, if desired, describe each irreducible component precisely as the common zeroesof a finite number of polynomials.
A New Criterion for Normal Form Algorithms
 Proc. AAECC, volume 1719 of LNCS
, 1999
"... In this paper, we present a new approach for computing normal forms in the quotient algebra A of a polynomial ring R by an ideal I. It is based on a criterion, which gives a necessary and sufficient condition for a projection onto a set of polynomials, to be a normal form modulo the ideal I. This cr ..."
Abstract

Cited by 45 (16 self)
 Add to MetaCart
In this paper, we present a new approach for computing normal forms in the quotient algebra A of a polynomial ring R by an ideal I. It is based on a criterion, which gives a necessary and sufficient condition for a projection onto a set of polynomials, to be a normal form modulo the ideal I. This criterion does not require any monomial ordering and generalizes the Buchberger criterion of Spolynomials. It leads to a new algorithm for constructing the multiplicative structure of a zerodimensional algebra. Described in terms of intrinsic operations on vector spaces in the ring of polynomials, this algorithm extends naturally to Laurent polynomials.
A Direct Method for 3D Factorization of Nonrigid Motion Observed in 2D
, 2005
"... This paper shows how the problem can be solved without any such additional constraints. Like the XCK method, our solution is exact for noiseless data. However, the error surface contemplated by all methods is quartic in the unknowns, and nested leastsquares solutions such as XCK's essentially igno ..."
Abstract

Cited by 41 (0 self)
 Add to MetaCart
This paper shows how the problem can be solved without any such additional constraints. Like the XCK method, our solution is exact for noiseless data. However, the error surface contemplated by all methods is quartic in the unknowns, and nested leastsquares solutions such as XCK's essentially ignore some of the terms. With noisy data or clean data with a longtailed singular value spectrum, these terms can make a substantial contribution to the error, leading to suboptimal factorizations. We recast nonrigid SFM as a constrained optimization problem and show how to efficiently and directly minimize the error, thereby obtaining substantially better factorizations of both synthetic and realworld data
Semidefinite Representations for Finite Varieties
 MATHEMATICAL PROGRAMMING
, 2002
"... We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming prob ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming problem. This semidefinite program involves combinatorial moment matrices, which are matrices indexed by a basis of the quotient vector space R[x 1 , . . . , x n ]/I. Our arguments are elementary and extend known facts for the grid case including 0/1 and polynomial programming. They also relate to known algebraic tools for solving polynomial systems of equations with finitely many complex solutions. Semidefinite approximations can be constructed by considering truncated combinatorial moment matrices; rank conditions are given (in a grid case) that ensure that the approximation solves the original problem at optimality.
Motivations for an arbitrary precision interval arithmetic and the MPFI library
 Reliable Computing
, 2002
"... Nowadays, computations involve more and more operations and consequently errors. The limits of applicability of some numerical algorithms are now reached: for instance the theoretical stability of a dense matrix factorization (LU or QR) is ensured under the assumption that n 3 u < 1, where n is the ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
Nowadays, computations involve more and more operations and consequently errors. The limits of applicability of some numerical algorithms are now reached: for instance the theoretical stability of a dense matrix factorization (LU or QR) is ensured under the assumption that n 3 u < 1, where n is the dimension of the matrix and u = 1 + − 1, with 1 + the smallest floatingpoint larger than 1; this means that n must be less than 200,000, which is almost reached by modern simulations. The numerical quality of solvers is now an issue, and not only their mathematical quality. Let us cite studies performed by the CEA (French Nuclear Agency) on the simulation of nuclear plant accidents and also softwares controlling and possibly correcting numerical programs, such as Cadna [10] or Cena [20]. Another approach consists in computing with certified enclosures, namely interval arithmetic [21, 2, 18]. The fundamental principle of this arithmetic consists in replacing every number by an interval enclosing it. For instance, π cannot be exactly represented using a binary or decimal arithmetic, but it
Multigraded Hilbert schemes
 J. Algebraic Geom
"... We introduce the multigraded Hilbert scheme, which parametrizes all homogeneous ideals with fixed Hilbert function in a polynomial ring that is graded by any abelian group. Our construction is widely applicable, it provides explicit equations, and it allows us to prove a range of new results, includ ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
We introduce the multigraded Hilbert scheme, which parametrizes all homogeneous ideals with fixed Hilbert function in a polynomial ring that is graded by any abelian group. Our construction is widely applicable, it provides explicit equations, and it allows us to prove a range of new results, including Bayer’s conjecture on equations defining Grothendieck’s classical Hilbert scheme and the construction of a Chow morphism for toric Hilbert schemes. 1.
Minimizing polynomials via sum of squares over the gradient ideal
 Math. Program
"... A method is proposed for finding the global minimum of a multivariate polynomial via sum of squares (SOS) relaxation over its gradient variety. That variety consists of all points where the gradient is zero and it need not be finite. A polynomial which is nonnegative on its gradient variety is shown ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
A method is proposed for finding the global minimum of a multivariate polynomial via sum of squares (SOS) relaxation over its gradient variety. That variety consists of all points where the gradient is zero and it need not be finite. A polynomial which is nonnegative on its gradient variety is shown to be SOS modulo its gradient ideal, provided the gradient ideal is radical or the polynomial is strictly positive on the gradient variety. This opens up the possibility of solving previously intractable polynomial optimization problems. The related problem of constrained minimization is also considered, and numerical examples are discussed. Experiments show that our method using the gradient variety outperforms prior SOS methods.
Some Remarks on Real and Complex Output Feedback
, 1998
"... . We provide some new necessary and sufficient conditions which guarantee arbitrary pole placement of a particular linear system over the complex numbers. We exhibit a nontrivial real linear system which is not controllable by real static output feedback and discuss a conjecture from algebraic geom ..."
Abstract

Cited by 25 (11 self)
 Add to MetaCart
. We provide some new necessary and sufficient conditions which guarantee arbitrary pole placement of a particular linear system over the complex numbers. We exhibit a nontrivial real linear system which is not controllable by real static output feedback and discuss a conjecture from algebraic geometry concerning the existence of real linear systems for which all static feedback laws are real. 1. Preliminaries Let F be an arbitrary field and let m; p; n be fixed positive integers. Let A; B; C be matrices with entries in F of sizes n \Theta n, n \Theta m, and p \Theta n respectively. Identify the space of monic polynomials having degree n, s n + a n\Gamma1 s n\Gamma1 + \Delta \Delta \Delta + a 1 s + a 0 2 F[s]; with the vector space F n . In its simplest form, the static output pole placement problem asks for conditions on the matrices A; B; C which guarantee that the pole placement map Ø (A;B;C) : F mp \Gamma! F n ; K 7\Gamma! det(sI \Gamma A \Gamma BKC) (1) is surjectiv...
Algebraic Cryptanalysis of McEliece Variants with Compact Keys
 In Proceedings of Eurocrypt 2010
"... Abstract. In this paper we propose a new approach to investigate the security of the McEliece cryptosystem. We recall that this cryptosystem relies on the use of errorcorrecting codes. Since its invention thirty years ago, no efficient attack had been devised that managed to recover the private key ..."
Abstract

Cited by 25 (8 self)
 Add to MetaCart
Abstract. In this paper we propose a new approach to investigate the security of the McEliece cryptosystem. We recall that this cryptosystem relies on the use of errorcorrecting codes. Since its invention thirty years ago, no efficient attack had been devised that managed to recover the private key. We prove that the private key of the cryptosystem satisfies a system of bihomogeneous polynomial equations. This property is due to the particular class of codes considered which are alternant codes. We have used these highly structured algebraic equations to mount an efficient keyrecovery attack against two recent variants of the McEliece cryptosystems that aim at reducing public key sizes. These two compact variants of McEliece managed to propose keys with less than 20,000 bits. To do so, they proposed to use quasicyclic or dyadic structures. An implementation of our algebraic attack in the computer algebra system MAGMA allows to find the secretkey in a negligible time (less than one second) for almost all the proposed challenges. For instance, a private key designed for a 256bit security has been found in 0.06 seconds with about 2 17.8 operations. 1