Results 1 
4 of
4
A survey on continuous time computations
 New Computational Paradigms
"... Abstract. We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing resu ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Abstract. We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature. 1
How much can analog and hybrid systems be proved (super)Turing
 Applied Mathematics and Computation
, 2006
"... Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing Machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
(Show Context)
Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing Machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can quantify this, by considering several classes of continuous time dynamical systems, and by studying how much they can be proved Turing or superTuring. 1
COntinuous tiMe comPUTations. Computations on the Reals.
, 2007
"... We propose to contribute to understand computation theories for continuous time systems. This is motivated by • understanding algorithmic complexity of automatic verification procedures for continuous and hybrid systems; • understanding some new models of computations. New models of computations und ..."
Abstract
 Add to MetaCart
(Show Context)
We propose to contribute to understand computation theories for continuous time systems. This is motivated by • understanding algorithmic complexity of automatic verification procedures for continuous and hybrid systems; • understanding some new models of computations. New models of computations under study include analog electronics models, and some recent sensor and telecommunication networks models. Hybrid systems include all systems that mix continuous dynamics with discrete transitions. We propose to do so to develop the model of Rrecursive functions introduced by Moore in [49], using the recent framework of [24]. We expect by the end of this project to • Develop significantly computation theory for continuous time systems to noisy and robust systems. Expected implications are contributions to understand a famous conjecture in verification about decidability and termination of verification procedures for hybrid systems, and hence possibly new verification tools. • Revisit computations on the reals, to avoid references to Turing machines. Expected implications are lower and upper bounds on the algorithmic complexity of natural problems in verification and control, motivated by automatic verification procedures for continuous and hybrid systems. • Understand deeply some new computational models. Expected implications are better understanding of some recent models of sensor and telecommunication networks, that could be used to better program them. • Contribute to understand better the computational properties of models of natural inspiration, and in particular contribute to understand whether edgeofchaos regimes may provide an appropriate setting for computational processes.
Abstract How much can analog and hybrid systems be proved
"... Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can ..."
Abstract
 Add to MetaCart
Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can quantify this, by considering several classes of continuous time dynamical systems, and by studying how much they can be proved Turing or superTuring.