Results 1  10
of
31
Telephone call centers: Tutorial, review, and research prospects
 Mgmt
, 2003
"... Telephone call centers are an integral part of many businesses, and their economic role is significant and growing. They are also fascinating sociotechnical systems in which the behavior of customers and employees is closely intertwined with physical performance measures. In these environments trad ..."
Abstract

Cited by 155 (7 self)
 Add to MetaCart
Telephone call centers are an integral part of many businesses, and their economic role is significant and growing. They are also fascinating sociotechnical systems in which the behavior of customers and employees is closely intertwined with physical performance measures. In these environments traditional operational models are of great value – and at the same time fundamentally limited – in their ability to characterize system performance. We review the state of research on telephone call centers. We begin with a tutorial on how call centers function and proceed to survey academic research devoted to the management of their operations. We then outline important problems that have not been addressed and identify promising directions for future research. Acknowledgments The authors thank Lee Schwarz, Wallace Hopp and the editorial board of M&SOM for initiating this project, as well as the referees for their valuable comments. Thanks are also due to L. Brown, A. Sakov, H. Shen, S. Zeltyn and L. Zhao for their approval of importing pieces of [36, 112].
Dimensioning Large Call Centers
 OPERATIONS RESEARCH
, 2000
"... We develop a framework for asymptotic optimization of a queueing system. The motivation is the staffing problem of call centers with 100's of agents (or more). Such a call center is modeled as an M/M/N queue, where the number of agents N is large. Within our framework, we determine the asymptoticall ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
We develop a framework for asymptotic optimization of a queueing system. The motivation is the staffing problem of call centers with 100's of agents (or more). Such a call center is modeled as an M/M/N queue, where the number of agents N is large. Within our framework, we determine the asymptotically optimal staffing level N that trades off agents' costs with service quality: the higher the latter, the more expensive is the former. As an alternative to this optimization, we also develop a constraint satisfaction approach where one chooses the least N that adheres to a given constraint on waiting cost. Either way, the analysis gives rise to three regimes of operation: qualitydriven, where the focus is on service quality; efficiencydriven, which emphasizes agents' costs; and a rationalized regime that balances, and in fact unifies, the other two. Numerical experiments reveal remarkable accuracy of our asymptotic approximations: over a wide range of parameters, from the very small ...
Contact centers with a callback option and realtime delay information
 Operations Research
, 2004
"... doi 10.1287/opre.1030.0088 ..."
Efficiencydriven heavytraffic approximations for manyserver queues with abandonments
 Management Science
, 2004
"... Motivated by the desire to understand the performance of serviceoriented call centers, which often provide lowtomoderate quality of service, this paper investigates the efficiencydriven (ED) limiting regime for manyserver queues with abandonments. The starting point is the realization that, in ..."
Abstract

Cited by 47 (31 self)
 Add to MetaCart
Motivated by the desire to understand the performance of serviceoriented call centers, which often provide lowtomoderate quality of service, this paper investigates the efficiencydriven (ED) limiting regime for manyserver queues with abandonments. The starting point is the realization that, in the presence of substantial customer abandonment, callcenter servicelevel agreements (SLA’s) can be met in the ED regime, where the arrival rate exceeds the maximum possible service rate. Mathematically, the ED regime is defined by letting the arrival rate and the number of servers increase together so that the probability of abandonment approaches a positive limit. To obtain the ED regime, it suffices to let the arrival rate and the number of servers increase with the traffic intensity ρ held fixed with ρ> 1 (so that the arrival rate exceeds the maximum possible service rate). Even though the probability of delay necessarily approaches 1 in the ED regime, the ED regime can be realistic because, due to the abandonments, the delays need not be excessively large. This paper establishes ED manyserver heavytraffic limits and develops associated approximations for performance measures in the M/M/s/r + M model, having a Poisson arrival process, exponential service times, s servers, r extra waiting spaces and exponential abandon times (the final +M). In the ED regime, essentially the same limiting behavior occurs when the abandonment rate α approaches 0 as when the number of servers s approaches ∞; indeed, it suffices to assume that s/α → ∞. The ED approximations are shown to be useful by comparing them to exact numerical results for the M/M/s/r + M model obtained using an algorithm developed in Whitt (2003), which exploits numerical transform inversion.
A staffing algorithm for call centers with skillbased routing
 Manufacturing and Service Operations Management
, 2005
"... informs ® doi 10.1287/msom.1050.0086 © 2005 INFORMS Call centers usually handle several types of calls, butitis usually notpossible or costeffective to have every agent be able to handle every type of call. Thus, the agents tend to have different skills, in different combinations. In such an environ ..."
Abstract

Cited by 33 (7 self)
 Add to MetaCart
informs ® doi 10.1287/msom.1050.0086 © 2005 INFORMS Call centers usually handle several types of calls, butitis usually notpossible or costeffective to have every agent be able to handle every type of call. Thus, the agents tend to have different skills, in different combinations. In such an environment, it is challenging to route calls effectively and determine the staff requirements. This paper addresses both of these routing and staffing problems by exploiting limited crosstraining. Consistent with the literature on flexible manufacturing, we find that minimal flexibility can provide great benefits: Simulation experiments show that when (1) the servicetime distribution does not depend on the call type or the agent and (2) each agent has only two skills, in appropriate combinations, the performance is almost as good as when each agent has all skills. We apply this flexibility property to develop an algorithm for both routing and staffing, aiming to minimize the total staff subject to perclass performance constraints. With appropriate flexibility, it suffices to use a suboptimal routing algorithm. Simulation experiments show that the overall procedure can be remarkably effective: The required staff with limited crosstraining can be nearly the same as if all agents had all skills. Hence, the overall algorithm is nearly optimal for that scenario.
Engineering solution of a basic callcenter model
 Management Science
, 2005
"... An algorithm is developed to rapidly compute approximations for all the standard steadystate performance measures in the basic callcenter queueing model M/GI/s/r+GI, which has a Poisson arrival process, IID service times with a general distribution, s servers, r extra waiting spaces and IID custom ..."
Abstract

Cited by 29 (22 self)
 Add to MetaCart
An algorithm is developed to rapidly compute approximations for all the standard steadystate performance measures in the basic callcenter queueing model M/GI/s/r+GI, which has a Poisson arrival process, IID service times with a general distribution, s servers, r extra waiting spaces and IID customer abandonment times with a general distribution. Empirical studies of call centers indicate that the servicetime and abandontime distributions often are not nearly exponential, so that it is important to go beyond the Markovian M/M/s/r + M special case, but the general servicetime and abandontime distributions make the realistic model very difficult to analyze directly. The proposed algorithm is based on an approximation by an appropriate Markovian M/M/s/r + M(n) queueing model, where M(n) denotes statedependent abandonment rates. After making an additional approximation, steadystate waitingtime distributions are characterized via their Laplace transforms. Then the approximate distributions are computed by numerically inverting the transforms. Simulation experiments show that the approximation is quite accurate. The overall algorithm can be applied to determine desired staffing levels, e.g., the minimum number of servers needed to guarantee that, first, the abandonment rate is below any specified target value and, second, that the conditional probability that an arriving customer will be served within a specified deadline, given that the customer eventually will be served, is at least a specified target value.
Heavytraffic limits for the G/H∗ 2 /n/m queue
 Math. Oper. Res
, 2005
"... We establish heavytraffic stochasticprocess limits for queuelength, waitingtime and overflow stochastic processes in a class of G/GI/n/m queueing models with n servers and m extra waiting spaces. We let the arrival process be general, only requiring that it satisfy a functional central limit th ..."
Abstract

Cited by 28 (12 self)
 Add to MetaCart
We establish heavytraffic stochasticprocess limits for queuelength, waitingtime and overflow stochastic processes in a class of G/GI/n/m queueing models with n servers and m extra waiting spaces. We let the arrival process be general, only requiring that it satisfy a functional central limit theorem. In order to capture the impact of the servicetime distribution beyond its mean within a Markovian framework, we consider a special class of servicetime distributions, denoted by H ∗ 2, which are mixtures of an exponential distribution with probability p and a unit point mass at 0 with probability 1 − p. These servicetime distributions exhibit relatively high variability, having squared coefficients of variation greater than or equal to one. As in Halfin and Whitt (1981), Puhalskii and Reiman (2000) and Garnett, Mandelbaum and Reiman (2000), we consider a sequence of queueing models indexed by the number of servers, n, and let n tend to infinity along with the traffic intensities ρn so that √ n(1 − ρn) → β for − ∞ < β < ∞. To treat finite waiting rooms, we let mn / √ n → κ for 0 < κ ≤ ∞. With the special H ∗ 2 servicetime distribution, the limit processes are onedimensional Markov processes, behaving like diffusion processes with different drift and diffusion functions in two different regions, above and below zero. We also establish a limit for the G/M/n/m + M model, having exponential customer abandonments.
Dynamic scheduling of a multiclass queue in the HalfinWhitt heavy traffic regime
, 2003
"... We consider a Markovian model of a multiclass queueing system in which a single large pool of servers attends to the various customer classes. Customers waiting to be served may abandon the queue, and there is a cost penalty associated with such abandonments. Service rates, abandonment rates and aba ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
We consider a Markovian model of a multiclass queueing system in which a single large pool of servers attends to the various customer classes. Customers waiting to be served may abandon the queue, and there is a cost penalty associated with such abandonments. Service rates, abandonment rates and abandonment penalties are generally different for the different classes. The problem studied is that of dynamically scheduling the various classes. We consider the HalfinWhitt heavy traffic regime, where the total arrival rate and the number of servers both become large in such a way that the system’s traffic intensity parameter approaches one. An approximating diffusion control problem is described and justified as a purely formal (i.e., non rigorous) heavy traffic limit. The HamiltonJacobiBellman equation associated with the limiting diffusion control problem is shown to have a smooth (classical) solution, and optimal controls are shown to have an extremal or “bangbang ” character. Several useful qualitative insights are derived from the mathematical analysis, including a “square root rule ” for sizing large systems and a sharp contrast between system behavior in the HalfinWhitt regime versus that observed in the “conventional ” heavy traffic regime. The latter phenomenon is illustrated by means of a numerical example having two customer classes.
Scheduling a multiclass queue with many exponential servers: Asymptotic optimality in heavytraffic,” The Annals of Applied Probability
, 2004
"... We consider the problem of scheduling a queueing system in which many statistically identical servers cater to several classes of impatient customers. Service times and impatience clocks are exponential while arrival processes are renewal. Our cost is an expected cumulative discounted function, line ..."
Abstract

Cited by 27 (8 self)
 Add to MetaCart
We consider the problem of scheduling a queueing system in which many statistically identical servers cater to several classes of impatient customers. Service times and impatience clocks are exponential while arrival processes are renewal. Our cost is an expected cumulative discounted function, linear or nonlinear, of appropriately normalized performance measures. As a special case, the cost per unit time can be a function of the number of customers waiting to be served in each class, the number actually being served, the abandonment rate, the delay experienced by customers, the number of idling servers, as well as certain combinations thereof. We study the system in an asymptotic heavytraffic regime where the number of servers n and the offered load r are simultaneously scaled up and carefully balanced: n ≈ r + β √ r for some scalar β. This yields an operation that enjoys the benefits of both heavy traffic (high server utilization) and light traffic (high service levels.)
A diffusion approximation for the G/GI/n/m queue
 Operations Research
"... informs ® doi 10.1287/opre.1040.0136 © 2004 INFORMS We develop a diffusion approximation for the queuelength stochastic process in the G/GI/n/m queueing model (having a general arrival process, independent and identically distributed service times with a general distribution, n servers, and m extra ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
informs ® doi 10.1287/opre.1040.0136 © 2004 INFORMS We develop a diffusion approximation for the queuelength stochastic process in the G/GI/n/m queueing model (having a general arrival process, independent and identically distributed service times with a general distribution, n servers, and m extra waiting spaces). We use the steadystate distribution of that diffusion process to obtain approximations for steadystate performance measures of the queueing model, focusing especially upon the steadystate delay probability. The approximations are based on heavytraffic limits in which n tends to infinity as the traffic intensity increases. Thus, the approximations are intended for large n. For the GI/M/n/ � special case, Halfin and Whitt (1981) showed that scaled versions of the queuelength process converge to a diffusion process when the traffic intensity �n approaches 1 with �1 − �n � √ n → � for 0 <�<�. A companion paper, Whitt (2005), extends that limit to a special class of G/GI/n/mn models in which the number of waiting places depends on n and the servicetime distribution is a mixture of an exponential distribution with probability p and a unit point mass at 0 with probability 1 − p. Finite waiting rooms are treated by incorporating the additional limit mn / √ n → � for 0 <� � �. The approximation for the more general G/GI/n/m model developed here is consistent