Results 1  10
of
33
The Tile Model
 PROOF, LANGUAGE AND INTERACTION: ESSAYS IN HONOUR OF ROBIN MILNER
, 1996
"... In this paper we introduce a model for a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting, in particular from the rewriting logic framework [Mes92], and of concurrency theory: among the ..."
Abstract

Cited by 65 (24 self)
 Add to MetaCart
In this paper we introduce a model for a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting, in particular from the rewriting logic framework [Mes92], and of concurrency theory: among the others, the structured operational semantics [Plo81], the context systems [LX90] and the structured transition systems [CM92] approaches. Our model recollects many properties of these sources: first, it provides a compositional way to describe both the states and the sequences of transitions performed by a given system, stressing their distributed nature. Second, a suitable notion of typed proof allows to take into account also those formalisms relying on the notions of synchronization and sideeffects to determine the actual behaviour of a system. Finally, an equivalence relation over sequences of transitions is defined, equipping the system under analysis with a concurrent semantics, ...
Higherdimensional algebra IV: 2Tangles
"... Just as knots and links can be algebraically described as certain morphisms in the category of tangles in 3 dimensions, compact surfaces smoothly embedded in R 4 can be described as certain 2morphisms in the 2category of ‘2tangles in 4 dimensions’. Using the work of Carter, Rieger and Saito, we p ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Just as knots and links can be algebraically described as certain morphisms in the category of tangles in 3 dimensions, compact surfaces smoothly embedded in R 4 can be described as certain 2morphisms in the 2category of ‘2tangles in 4 dimensions’. Using the work of Carter, Rieger and Saito, we prove that this 2category is the ‘free semistrict braided monoidal 2category with duals on one unframed selfdual object’. By this universal property, any unframed selfdual object in a braided monoidal 2category with duals determines an invariant of 2tangles in 4 dimensions. 1
Process and Term Tile Logic
, 1998
"... In a similar way as 2categories can be regarded as a special case of double categories, rewriting logic (in the unconditional case) can be embedded into the more general tile logic, where also sideeffects and rewriting synchronization are considered. Since rewriting logic is the semantic basis o ..."
Abstract

Cited by 34 (25 self)
 Add to MetaCart
In a similar way as 2categories can be regarded as a special case of double categories, rewriting logic (in the unconditional case) can be embedded into the more general tile logic, where also sideeffects and rewriting synchronization are considered. Since rewriting logic is the semantic basis of several language implementation efforts, it is useful to map tile logic back into rewriting logic in a conservative way, to obtain executable specifications of tile systems. We extend the results of earlier work by two of the authors, focusing on some interesting cases where the mathematical structures representing configurations (i.e., states) and effects (i.e., observable actions) are very similar, in the sense that they have in common some auxiliary structure (e.g., for tupling, projecting, etc.). In particular, we give in full detail the descriptions of two such cases where (net) processlike and usual term structures are employed. Corresponding to these two cases, we introduce two ca...
A 2Categorical Presentation of Term Graph Rewriting
 CATEGORY THEORY AND COMPUTER SCIENCE, VOLUME 1290 OF LNCS
, 1997
"... It is wellknown that a term rewriting system can be faithfully described by a cartesian 2category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2categorical presentation for term graph rewriting. Building on a re ..."
Abstract

Cited by 34 (17 self)
 Add to MetaCart
It is wellknown that a term rewriting system can be faithfully described by a cartesian 2category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2categorical presentation for term graph rewriting. Building on a result presented in [8], which shows that term graphs over a given signature are in onetoone correspondence with arrows of a gsmonoidal category freely generated from the signature, we associate with a term graph rewriting system a gsmonoidal 2category, and show that cells faithfully represent its rewriting sequences. We exploit the categorical framework to relate term graph rewriting and term rewriting, since gsmonoidal (2)categories can be regarded as "weak" cartesian (2)categories, where certain (2)naturality axioms have been dropped.
Operads In HigherDimensional Category Theory
, 2004
"... The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak ncategory. Included is a full explanation of why the proposed definition of ncategory is a reasonable one, and of what happens when n < ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak ncategory. Included is a full explanation of why the proposed definition of ncategory is a reasonable one, and of what happens when n <= 2. Generalized operads and multicategories play other parts in higherdimensional algebra too, some of which are outlined here: for instance, they can be used to simplify the opetopic approach to ncategories expounded by Baez, Dolan and others, and are a natural language in which to discuss enrichment of categorical structures.
An Inductive View of Graph Transformation
 In Workshop on Algebraic Development Techniques
, 1998
"... . The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result i ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
. The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result is built: This is the role played by (the application of) a substitution in term rewriting. Or inductively, showing how to build the class of all possible reductions from a set of basic ones: For term rewriting, this is the usual definition of the rewrite relation as the minimal closure of the rewrite rules. As far as graph transformation is concerned, the operational view is by far more popular: In this paper we lay the basis for the orthogonal view. We first provide an inductive description for graphs as arrows of a freely generated dgsmonoidal category. We then apply 2categorical techniques, already known for term and term graph rewriting [29, 7], recasting in this framework the...
Higher dimensional algebra V: 2groups
 Theory Appl. Categ
"... A 2group is a ‘categorified ’ version of a group, in which the underlying set G has been replaced by a category and the multiplication map m: G×G → G has been replaced by a functor. Various versions of this notion have already been explored; our goal here is to provide a detailed introduction to tw ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
A 2group is a ‘categorified ’ version of a group, in which the underlying set G has been replaced by a category and the multiplication map m: G×G → G has been replaced by a functor. Various versions of this notion have already been explored; our goal here is to provide a detailed introduction to two, which we call ‘weak ’ and ‘coherent ’ 2groups. A weak 2group is a weak monoidal category in which every morphism has an inverse and every object x has a ‘weak inverse’: an object y such that x ⊗ y ∼ = 1 ∼ = y ⊗ x. A coherent 2group is a weak 2group in which every object x is equipped with a specified weak inverse ¯x and isomorphisms ix: 1 → x ⊗ ¯x, ex: ¯x ⊗ x → 1 forming an adjunction. We describe 2categories of weak and coherent 2groups and an ‘improvement ’ 2functor that turns weak 2groups into coherent ones, and prove that this 2functor is a 2equivalence of 2categories. We internalize the concept of coherent 2group, which gives a quick way to define Lie 2groups. We give a tour of examples, including the ‘fundamental 2group ’ of a space and various Lie 2groups. We also explain how coherent 2groups can be classified in terms of 3rd cohomology classes in group cohomology. Finally, using this classification, we construct for any connected and simplyconnected compact simple Lie group G a family of 2groups G � ( � ∈ Z) having G as its group of objects and U(1) as the group of automorphisms of its identity object. These 2groups are built using Chern–Simons theory, and are closely related to the Lie 2algebras g � ( � ∈ R) described in a companion paper. 1 1
A BiCategorical Axiomatisation of Concurrent Graph Rewriting
, 1999
"... In this paper the concurrent semantics of doublepushout (DPO) graph rewriting, which is classically defined in terms of shiftequivalence classes of graph derivations, is axiomatised via the construction of a free monoidal bicategory. In contrast to a previous attempt based on 2categories, the us ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
In this paper the concurrent semantics of doublepushout (DPO) graph rewriting, which is classically defined in terms of shiftequivalence classes of graph derivations, is axiomatised via the construction of a free monoidal bicategory. In contrast to a previous attempt based on 2categories, the use of bicategories allows to define rewriting on concrete graphs. Thus, the problem of composition of isomorphism classes of rewriting sequences is avoided. Moreover, as a first step towards the recovery of the full expressive power of the formalism via a purely algebraic description, the concept of disconnected rules is introduced, i.e., rules whose interface graphs are made of disconnected nodes and edges only. It is proved that, under reasonable assumptions, rewriting via disconnected rules enjoys similar concurrency properties like in the classical approach.
Basic bicategories
 Eprint math.CT/9810017
, 1998
"... A concise guide to very basic bicategory theory, from the definition of a bicategory to the coherence theorem. ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
A concise guide to very basic bicategory theory, from the definition of a bicategory to the coherence theorem.
Rewriting On Cyclic Structures: Equivalence Between The Operational And The Categorical Description
, 1999
"... . We present a categorical formulation of the rewriting of possibly cyclic term graphs, based on a variation of algebraic 2theories. We show that this presentation is equivalent to the wellaccepted operational definition proposed by Barendregt et aliibut for the case of circular redexes, fo ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
. We present a categorical formulation of the rewriting of possibly cyclic term graphs, based on a variation of algebraic 2theories. We show that this presentation is equivalent to the wellaccepted operational definition proposed by Barendregt et aliibut for the case of circular redexes, for which we propose (and justify formally) a different treatment. The categorical framework allows us to model in a concise way also automatic garbage collection and rules for sharing/unsharing and folding/unfolding of structures, and to relate term graph rewriting to other rewriting formalisms. R'esum'e. Nous pr'esentons une formulation cat'egorique de la r'e'ecriture des graphes cycliques des termes, bas'ee sur une variante de 2theorie alg'ebrique. Nous prouvons que cette pr'esentation est 'equivalente `a la d'efinition op'erationnelle propos'ee par Barendregt et d'autres auteurs, mais pas dons le cas des radicaux circulaires, pour lesquels nous proposons (et justifions formellem...