Results 1 
5 of
5
Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory
 Mem. Amer. Math. Soc
"... The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjun ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjunction, are necessary for this
Algebras of higher operads as enriched categories II
 In preparation
"... Abstract. One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we begin to adapt the machinery of globular operads [1] to this task. We present a general construction of a tensor product on the ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
Abstract. One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we begin to adapt the machinery of globular operads [1] to this task. We present a general construction of a tensor product on the category of nglobular sets from any normalised (n + 1)operad A, in such a way that the algebras for A may be recaptured as enriched categories for the induced tensor product. This is an important step in reconciling the globular and simplicial approaches to higher category theory, because in the simplicial approaches one proceeds inductively following the idea that a weak (n + 1)category is something like a category enriched in weak ncategories. In this paper we reveal how such an intuition may be formulated in terms of globular operads.
Symmetric monoidal completions and the exponential principle among labeled combinatorial structures
 THEORY AND APPLICATIONS OF CATEGORIES
, 2003
"... We generalize Dress and Müller's main result in [5]. We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. This perspective allows to formulate a general exponential principle in a symmetric monoidal category. We show that fo ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We generalize Dress and Müller's main result in [5]. We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. This perspective allows to formulate a general exponential principle in a symmetric monoidal category. We show that for any groupoid G, the !G of presheaves on the symmetric monoidal completion !G of G satisfies the exponential principle. The main result in [5] reduces to the case G = 1. We discuss two notions of functor between categories satisfying the exponential principle and express some well known combinatorial identities as instances of the preservation properties of these functors. Finally, we give a characterization of G as a subcategory of !G.
A 2categories companion
"... Abstract. This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. 1. Overview and basic examples This paper is a rather informal gu ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. 1. Overview and basic examples This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. As is the way of these things, the choice of topics is somewhat personal. No attempt is made at either rigour or completeness. Nor is it completely introductory: you will not find a definition of bicategory; but then nor will you really need one to read it. In keeping with the philosophy of category theory, the morphisms between bicategories play more of a role than the bicategories themselves. 1.1. The key players. There are bicategories, 2categories, and Catcategories. The latter two are exactly the same (except that strictly speaking a Catcategory should have small homcategories, but that need not concern us here). The first two are nominally different — the 2categories are the strict bicategories, and not every bicategory is strict — but every bicategory is biequivalent to a strict one, and biequivalence is the right general notion of equivalence for bicategories and for 2categories. Nonetheless, the theories of bicategories, 2categories, and Catcategories have rather different flavours.
Free Products of Higher Operad Algebras
, 909
"... Abstract. One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product of 2categories. In this paper we continue the developments of [3] and [2] by understanding the natural generalisations of Gray’s little brother, ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product of 2categories. In this paper we continue the developments of [3] and [2] by understanding the natural generalisations of Gray’s little brother, the funny tensor product of categories. In fact we exhibit for any higher categorical structure definable by an noperad in the sense of Batanin [1], an analogous tensor product which forms a symmetric monoidal closed structure