Results 1 
9 of
9
Computational Limits on Team Identification of Languages
, 1993
"... A team of learning machines is essentially a multiset of learning machines. ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
A team of learning machines is essentially a multiset of learning machines.
Training Sequences
"... this paper initiates a study in which it is demonstrated that certain concepts (represented by functions) can be learned, but only in the event that certain relevant subconcepts (also represented by functions) have been previously learned. In other words, the Soar project presents empirical evidence ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
this paper initiates a study in which it is demonstrated that certain concepts (represented by functions) can be learned, but only in the event that certain relevant subconcepts (also represented by functions) have been previously learned. In other words, the Soar project presents empirical evidence that learning how to learn is viable for computers and this paper proves that doing so is the only way possible for computers to make certain inferences.
On Aggregating Teams of Learning Machines
 Theoretical Computer Science A
, 1994
"... The present paper studies the problem of when a team of learning machines can be aggregated into a single learning machine without any loss in learning power. The main results concern aggregation ratios for vacillatory identification of languages from texts. For a positiveinteger n,amachine is said ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
The present paper studies the problem of when a team of learning machines can be aggregated into a single learning machine without any loss in learning power. The main results concern aggregation ratios for vacillatory identification of languages from texts. For a positiveinteger n,amachine is said to TxtFex n identify a language L just in case the machine converges to up to n grammars for L on any text for L.For such identification criteria, the aggregation ratio is derived for the n = 2 case. It is shown that the collection of languages that can be TxtFex 2 identified by teams with success ratio greater than 5=6 are the same as those collections of languages that can be TxtFex 2  identified by a single machine. It is also established that 5=6 is indeed the cutoff point by showing that there are collections of languages that can be TxtFex 2 identified bya team employing 6 machines, at least 5 of which are required to be successful, but cannot be TxtFex 2 identified byany single machine. Additionally, aggregation ratios are also derived for finite identification of languages from positive data and for numerous criteria involving language learning from both positive and negative data.
Recursion Theoretic Models of Learning: Some Results and Intuitions
 Annals of Mathematics and Artificial Intelligence
, 1995
"... View of Learning To implement a program that somehow "learns" it is neccessary to fix a set of concepts to be learned and develop a representation for the concepts and examples of the concepts. In order to investigate general properties of machine learning it is neccesary to work in as representati ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
View of Learning To implement a program that somehow "learns" it is neccessary to fix a set of concepts to be learned and develop a representation for the concepts and examples of the concepts. In order to investigate general properties of machine learning it is neccesary to work in as representation independent fashion as possible. In this work, we consider machines that learn programs for recursive functions. Several authors have argued that such studies are general enough to include a wide array of learning situations [2,3,22,23,24]. For example, a behavior to be learned can be modeled as a set of stimulus and response pairs. Assuming that any behavior associates only one response to each possible stimulus, behaviors can be viewed as functions from stimuli to responses. Some behaviors, such as anger, are not easily modeled as functions. Our primary interest, however, concerns the learning of fundamental behaviors such as reading (mapping symbols to sounds), recognition (mapping pa...
On identification by teams and probabilistic machines
 Lecture Notes in Artificial Intelligence
, 1995
"... ..."
Learning via Queries with Teams and Anomalies
"... this paper we continue the study of machines that ask questions by comparing such machines to teams of passive machines [26]. This yields, via work of Pitt and Smith [19], a comparison of active learning with probabilistic learning [18]. Also considered are query inference machines that learn an app ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
this paper we continue the study of machines that ask questions by comparing such machines to teams of passive machines [26]. This yields, via work of Pitt and Smith [19], a comparison of active learning with probabilistic learning [18]. Also considered are query inference machines that learn an approximation of what is desired. The approximation differs from the desired result in finitely many anomalous places. Passive approximate inductive inference has been extensively investigated [8,10,11,21,27].
Team Learning of Computable Languages
"... A team of learning machines is a multiset of learning machines. A team is said to successfully learn a concept just in case each member of some nonempty subset, of predetermined size, of the team learns the concept. Team learning of languages may be viewed as a suitable theoretical model for studyin ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
A team of learning machines is a multiset of learning machines. A team is said to successfully learn a concept just in case each member of some nonempty subset, of predetermined size, of the team learns the concept. Team learning of languages may be viewed as a suitable theoretical model for studying computational limits on the use of multiple heuristics in learning from examples. Team learning of recursively enumerable languages has been studied extensively. However, it may be argued that from a practical point of view all languages of interest are computable. This paper gives theoretical results about team learnability of computable (recursive) languages. These results are mainly about two issues: redundancy and aggregation. The issue of redundancy deals with the impact of increasing the size of a team and increasing the number of machines required to be successful. The issue of aggregation deals with conditions under which a team may be replaced by a single machine without any loss in learning ability. The learning scenarios considered are: (a) Identification in the limit of grammars for computable languages. (b) Identification in the limit of decision procedures for computable languages. (c) Identification in the limit of grammars for indexed families of computable languages. (d) Identification in the limit of grammars for indexed families with a recursively enumerable class of grammars for the family as the hypothesis space. Scenarios that can be modeled by team learning are also presented. 1
On Learning To Coordinate: Random Bits Help, Insightful Normal Forms, and Competency Isomorphisms
"... A mere bounded number of random bits judiciously employed by a probabilistically correct algorithmic coordinator is shown to increase the power of learning to coordinate compared to deterministic algorithmic coordinators. Furthermore, these probabilistic algorithmic coordinators are provably not cha ..."
Abstract
 Add to MetaCart
A mere bounded number of random bits judiciously employed by a probabilistically correct algorithmic coordinator is shown to increase the power of learning to coordinate compared to deterministic algorithmic coordinators. Furthermore, these probabilistic algorithmic coordinators are provably not characterized in power by teams of deterministic ones. An insightful, enumeration technique based,...