Results 1 
2 of
2
A linear time algorithm for embedding graphs in an arbitrary surface
 SIAM J. Discrete Math
, 1999
"... Ljubljana, February 2, 2009A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded treewidth ..."
Abstract

Cited by 56 (10 self)
 Add to MetaCart
Ljubljana, February 2, 2009A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded treewidth
Obstructions for 2Möbius band embedding extension problem
 SIAM J. Discrete Math
, 1997
"... Abstract. Let K = C ∪ e1 ∪ e2 be a subgraph of G, consisting of a cycle C and disjoint paths e1 and e2, connecting two interlacing pairs of vertices in C. Suppose that K is embedded in the MöbiusbandinsuchawaythatC lies on its boundary. An algorithm is presented which in linear time extends the embe ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
Abstract. Let K = C ∪ e1 ∪ e2 be a subgraph of G, consisting of a cycle C and disjoint paths e1 and e2, connecting two interlacing pairs of vertices in C. Suppose that K is embedded in the MöbiusbandinsuchawaythatC lies on its boundary. An algorithm is presented which in linear time extends the embedding of K to an embedding of G, if such an extension is possible, or finds a “nice ” obstruction for such embedding extensions. The structure of obtained obstructions is also analysed in details. Key words. surface embedding, obstruction, Möbius band, algorithm AMS subject classifications. 05C10, 05C85, 68Q20 1. Introduction. Let K be a subgraph of a graph G. A Kbridge (or a Kcomponent)inG is a subgraph of G which is either an edge e ∈ E(G)\E(K) (together with its endpoints) which has both endpoints in K, or it is a connected component of G − V (K) together with all edges (and their endpoints) between this component and K. EachedgeofaKbridge B having an endpoint in K is a foot of B. The vertices