Results 1  10
of
174
A general approximation technique for constrained forest problems
 in Proceedings of the 3rd Annual ACMSIAM Symposium on Discrete Algorithms
, 1992
"... Abstract. We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimizatio ..."
Abstract

Cited by 355 (21 self)
 Add to MetaCart
Abstract. We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization problems fit in this framework, including the shortest path, minimumcost spanning tree, minimumweight perfect matching, traveling salesman, and Steiner tree problems. Our technique produces approximation algorithms that run in O(n log n) time and come within a factor of 2 of optimal for most of these problems. For instance, we obtain a 2approximation algorithm for the minimumweight perfect matching problem under the triangle inequality. Our running time of O(n log n) time compares favorably with the best strongly polynomial exact algorithms running in O(n 3) time for dense graphs. A similar result is obtained for the 2matching problem and its variants. We also derive the first approximation algorithms for many NPcomplete problems, including the nonfixed pointtopoint connection problem, the exact path partitioning problem, and complex locationdesign problems. Moreover, for the prizecollecting traveling salesman or Steiner tree problems, we obtain 2approximation algorithms, therefore improving the previously bestknown performance guarantees of 2.5 and 3, respectively [Math. Programming, 59 (1993), pp. 413420].
Primaldual approximation algorithms for metric facility location and kmedian problems
 Journal of the ACM
, 1999
"... ..."
Approximation Algorithms for Directed Steiner Problems
 Journal of Algorithms
, 1998
"... We give the first nontrivial approximation algorithms for the Steiner tree problem and the generalized Steiner network problem on general directed graphs. These problems have several applications in network design and multicast routing. For both problems, the best ratios known before our work we ..."
Abstract

Cited by 143 (8 self)
 Add to MetaCart
We give the first nontrivial approximation algorithms for the Steiner tree problem and the generalized Steiner network problem on general directed graphs. These problems have several applications in network design and multicast routing. For both problems, the best ratios known before our work were the trivial O(k)approximations. For the directed Steiner tree problem, we design a family of algorithms that achieves an approximation ratio of i(i \Gamma 1)k 1=i in time O(n i k 2i ) for any fixed i ? 1, where k is the number of terminals. Thus, an O(k ffl ) approximation ratio can be achieved in polynomial time for any fixed ffl ? 0. Setting i = log k, we obtain an O(log 2 k) approximation ratio in quasipolynomial time. For the directed generalized Steiner network problem, we give an algorithm that achieves an approximation ratio of O(k 2=3 log 1=3 k), where k is the number of pairs of vertices that are to be connected. Related problems including the group Steiner...
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 123 (7 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.
Nearoptimal network design with selfish agents
 IN PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING (STOC
, 2003
"... We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possi ..."
Abstract

Cited by 121 (21 self)
 Add to MetaCart
We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possible edges in the network have costs and each agent’s goal is to pay as little as possible. Determining whether or not a Nash equilibrium exists in this game is NPcomplete. However, when the goal of each player is to connect a terminal to a common source, we prove that there is a Nash equilibrium as cheap as the optimal network, and give a polynomial time algorithm to find a (1 + ε)approximate Nash equilibrium that does not cost much more. For the general connection game we prove that there is a 3approximate Nash equilibrium that is as cheap as the optimal network, and give an algorithm to find a (4.65 + ε)approximate Nash equilibrium that does not cost much more.
A nearly bestpossible approximation algorithm for nodeweighted Steiner trees
, 1993
"... We give the first approximation algorithm for the nodeweighted Steiner tree problem. Its performance guarantee is within a constant factor of the best possible unless ~ P ' NP . Our algorithm generalizes to handle other network design problems. ..."
Abstract

Cited by 104 (8 self)
 Add to MetaCart
We give the first approximation algorithm for the nodeweighted Steiner tree problem. Its performance guarantee is within a constant factor of the best possible unless ~ P ' NP . Our algorithm generalizes to handle other network design problems.
BuyatBulk Network Design
"... Theessenceofthesimplestbuyatbulknetwork designproblemisbuyingnetworkcapacity"wholesale"toguaranteeconnectivityfromallnetwork nodestoacertaincentralnetworkswitch.Capacityissoldwith"volumediscount":themorecapacityisbought,thecheaperisthepriceperunit ofbandwidth.WeprovideO(log2n)randomized approximat ..."
Abstract

Cited by 104 (0 self)
 Add to MetaCart
Theessenceofthesimplestbuyatbulknetwork designproblemisbuyingnetworkcapacity"wholesale"toguaranteeconnectivityfromallnetwork nodestoacertaincentralnetworkswitch.Capacityissoldwith"volumediscount":themorecapacityisbought,thecheaperisthepriceperunit ofbandwidth.WeprovideO(log2n)randomized approximationalgorithmfortheproblem.This solvestheopenproblemin[15].Theonlypreviouslyknownsolutionswererestrictedtospecial cases(Euclideangraphs)[15]. Wesolveadditionalnaturalvariationsofthe problem,suchasmultisinknetworkdesign,as wellasselectivenetworkdesign.Theseproblems canbeviewedasgeneralizationsofthetheGeneralizedSteinerConnectivityandPrizecollecting salesman(KMST)problems. Intheselectivenetworkdesignproblem,some subsetofkwellsmustbeconnectedtothe(single) renery,sothatthetotalcostisminimized.
Improved Approximation Algorithms for Network Design Problems
, 1994
"... We consider a class of network design problems in which one needs to find a minimumcost network satisfying certain connectivity requirements. For example, in the survivable network design problem, the requirements specify that there should be at least r(v; w) edgedisjoint paths between each pai ..."
Abstract

Cited by 80 (11 self)
 Add to MetaCart
We consider a class of network design problems in which one needs to find a minimumcost network satisfying certain connectivity requirements. For example, in the survivable network design problem, the requirements specify that there should be at least r(v; w) edgedisjoint paths between each pair of vertices v and w. We present an approximation algorithm with a performance guarantee of 2H(fmax ) = 2(1 + 2 + 3 + \Delta \Delta \Delta + fmax ) where fmax is the maximum requirement. This improves upon the best previously known performance guarantee of 2fmax . We also show
Bicriteria network design problems
 In Proc. 22nd Int. Colloquium on Automata, Languages and Programming
, 1995
"... We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a ¡subgraph from a given subgraphclass that minimizes ..."
Abstract

Cited by 76 (13 self)
 Add to MetaCart
We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a ¡subgraph from a given subgraphclass that minimizes the second objective subject to the budget on the first. We consider three different criteria the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomialtime approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same we present a “black box ” parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a clusterbased approach to devise a approximation algorithms — the solutions output violate
Approximating the minimumdegree Steiner tree to within one of optimal
 Journal of Algorithms
, 1994
"... some optimal tree for the respective problems. Unless P = N P, this is the best bound achievable in polynomial time. ..."
Abstract

Cited by 74 (5 self)
 Add to MetaCart
some optimal tree for the respective problems. Unless P = N P, this is the best bound achievable in polynomial time.