Results 1  10
of
191
Hierarchical mixtures of experts and the EM algorithm
 Neural Computation
, 1994
"... We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood ..."
Abstract

Cited by 723 (19 self)
 Add to MetaCart
We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood problem; in particular, we present an ExpectationMaximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an online learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain. 1
BIRCH: an efficient data clustering method for very large databases
 In Proc. of the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD
, 1996
"... Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multidir nensional clataset. Prior work does not adequately address the problem of ..."
Abstract

Cited by 434 (2 self)
 Add to MetaCart
Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multidir nensional clataset. Prior work does not adequately address the problem of large datasets and minimization of 1/0 costs. This paper presents a data clustering method named Bfll (;”H (Balanced Iterative Reducing and Clustering using Hierarchies), and demonstrates that it is especially suitable for very large databases. BIRCH incrementally and clynamicall y clusters incoming multidimensional metric data points to try to produce the best quality clustering with the available resources (i. e., available memory and time constraints). BIRCH can typically find a goocl clustering with a single scan of the data, and improve the quality further with a few aclditioual scans. BIRCH is also the first clustering algorithm proposerl in the database area to handle “noise) ’ (data points that are not part of the underlying pattern) effectively. We evaluate BIRCH’S time/space efficiency, data input order sensitivity, and clustering quality through several experiments. We also present a performance comparisons of BIR (;’H versus CLARA NS, a clustering method proposed recently for large datasets, and S11OW that BIRCH is consistently 1
An analysis of Bayesian classifiers
 IN PROCEEDINGS OF THE TENTH NATIONAL CONFERENCE ON ARTI CIAL INTELLIGENCE
, 1992
"... In this paper we present anaveragecase analysis of the Bayesian classifier, a simple induction algorithm that fares remarkably well on many learning tasks. Our analysis assumes a monotone conjunctive target concept, and independent, noisefree Boolean attributes. We calculate the probability that t ..."
Abstract

Cited by 333 (17 self)
 Add to MetaCart
In this paper we present anaveragecase analysis of the Bayesian classifier, a simple induction algorithm that fares remarkably well on many learning tasks. Our analysis assumes a monotone conjunctive target concept, and independent, noisefree Boolean attributes. We calculate the probability that the algorithm will induce an arbitrary pair of concept descriptions and then use this to compute the probability of correct classification over the instance space. The analysis takes into account the number of training instances, the number of attributes, the distribution of these attributes, and the level of class noise. We also explore the behavioral implications of the analysis by presenting
Estimating Continuous Distributions in Bayesian Classifiers
 In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, 1995
"... When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality ..."
Abstract

Cited by 311 (2 self)
 Add to MetaCart
When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality assumption and instead use statistical methods for nonparametric density estimation. For a naive Bayesian classifier, we present experimental results on a variety of natural and artificial domains, comparing two methods of density estimation: assuming normality and modeling each conditional distribution with a single Gaussian; and using nonparametric kernel density estimation. We observe large reductions in error on several natural and artificial data sets, which suggests that kernel estimation is a useful tool for learning Bayesian models. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo, 1995 1 Introduction In rec...
The adaptive nature of human categorization
 Psychological Review
, 1991
"... A rational model of human categorization behavior is presented that assumes that categorization reflects the derivation of optimal estimates of the probability of unseen features of objects. A Bayesian analysis is performed of what optimal estimations would be if categories formed a disjoint partiti ..."
Abstract

Cited by 211 (2 self)
 Add to MetaCart
A rational model of human categorization behavior is presented that assumes that categorization reflects the derivation of optimal estimates of the probability of unseen features of objects. A Bayesian analysis is performed of what optimal estimations would be if categories formed a disjoint partitioning of the object space and if features were independently displayed within a category. This Bayesian analysis is placed within an incremental categorization algorithm. The resulting rational model accounts for effects of central tendency of categories, effects of specific instances, learning of linearly nonseparable categories, effects of category labels, extraction of basic level categories, baserate effects, probability matching in categorization, and trialbytrial learning functions. Although the rational model considers just I level of categorization, it is shown how predictions can be enhanced by considering higher and lower levels. Considering prediction at the lower, individual level allows integration of this rational analysis of categorization with the earlier rational analysis of memory (Anderson & Milson, 1989). Anderson (1990) presented a rational analysis ot 6 human cognition. The term rational derives from similar "rationalman" analyses in economics. Rational analyses in other fields are sometimes called adaptationist analyses. Basically, they are efforts to explain the behavior in some domain on the assumption that the behavior is optimized with respect to some criteria of adaptive importance. This article begins with a general characterization ofhow one develops a rational theory of a particular cognitive phenomenon. Then I present the basic theory of categorization developed in Anderson (1990) and review the applications from that book. Since the writing of the book, the theory has been greatly extended and applied to many new phenomena. Most of this article describes these new developments and applications. A Rational Analysis Several theorists have promoted the idea that psychologists might understand human behavior by assuming it is adapted to the environment (e.g., Brunswik, 1956; Campbell, 1974; Gib
Induction of Selective Bayesian Classifiers
 CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE
, 1994
"... In this paper, we examine previous work on the naive Bayesian classifier and review its limitations, which include a sensitivity to correlated features. We respond to this problem by embedding the naive Bayesian induction scheme within an algorithm that carries out a greedy search through the space ..."
Abstract

Cited by 208 (7 self)
 Add to MetaCart
In this paper, we examine previous work on the naive Bayesian classifier and review its limitations, which include a sensitivity to correlated features. We respond to this problem by embedding the naive Bayesian induction scheme within an algorithm that carries out a greedy search through the space of features. We hypothesize that this approach will improve asymptotic accuracy in domains that involve correlated features without reducing the rate of learning in ones that do not. We report experimental results on six natural domains, including comparisons with decisiontree induction, that support these hypotheses. In closing, we discuss other approaches to extending naive Bayesian classifiers and outline some directions for future research.
Clustering with instancelevel constraints
 In Proceedings of the Seventeenth International Conference on Machine Learning
, 2000
"... One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningf ..."
Abstract

Cited by 150 (6 self)
 Add to MetaCart
One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningful patterns and trends in large volumes of data, is an important task that falls into this category. Clustering algorithms are a particularly useful group of data analysis tools. These methods are used, for example, to analyze satellite images of the Earth to identify and categorize different land and foliage types or to analyze telescopic observations to determine what distinct types of astronomical bodies exist and to categorize each observation. However, most existing clustering methods apply general similarity techniques rather than making use of problemspecific information. This dissertation first presents a novel method for converting existing clustering algorithms into constrained clustering algorithms. The resulting methods are able to accept domainspecific information in the form of constraints on the output clusters. At the most general level, each constraint is an instancelevel statement
Substructure Discovery Using Minimum Description Length and Background Knowledge
 Journal of Artificial Intelligence Research
, 1994
"... The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our Subdue substructure discovery system based on the minimum description length principle. The Subdue system discovers substructures ..."
Abstract

Cited by 149 (37 self)
 Add to MetaCart
The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our Subdue substructure discovery system based on the minimum description length principle. The Subdue system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previouslydiscovered substructures in the data, multiple passes of Subdue produce a hierarchical description of the structural regularities in the data. Subdue uses a computationallybounded inexact graph match that identifies similar, but not identical, instances of a substructure and finds an approximate measure of closeness of two substructures when under computational constraints. In addition to the minimum description length principle, other background knowledge can be used by Subdue to guide the search towards more appropriate substructures. Experiments in a variety of domains demonstrate Subdu...
Dimensions of Meaning
, 1992
"... The representation of documents and queries as vectors in a highdimensional space is wellestablished in information retrieval [1]. This paper proposes to represent the semantics of words and contexts in a text as vectors. The dimensions of the space are words and the initial vectors are determined ..."
Abstract

Cited by 143 (5 self)
 Add to MetaCart
The representation of documents and queries as vectors in a highdimensional space is wellestablished in information retrieval [1]. This paper proposes to represent the semantics of words and contexts in a text as vectors. The dimensions of the space are words and the initial vectors are determined by the words occurring close to the entity to be represented which implies that the space has several thousand dimensions (words). This makes the vector representations (which are dense) too cumbersome to use directly. Therefore, dimensionality reduction by means of a singular value decomposition is employed. The paper analyzes the structure of the vector representations and applies them to word sense disambiguation and thesaurus induction.