Results 1  10
of
83
Models and issues in data stream systems
 IN PODS
, 2002
"... In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work releva ..."
Abstract

Cited by 620 (19 self)
 Add to MetaCart
In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work relevant to data stream systems and current projects in the area, the paper explores topics in stream query languages, new requirements and challenges in query processing, and algorithmic issues.
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 345 (6 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimizationbased approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log 2 N), where N is the length of the signal. 1.
An improved data stream summary: The CountMin sketch and its applications
 J. Algorithms
, 2004
"... Abstract. We introduce a new sublinear space data structure—the CountMin Sketch — for summarizing data streams. Our sketch allows fundamental queries in data stream summarization such as point, range, and inner product queries to be approximately answered very quickly; in addition, it can be applie ..."
Abstract

Cited by 293 (36 self)
 Add to MetaCart
Abstract. We introduce a new sublinear space data structure—the CountMin Sketch — for summarizing data streams. Our sketch allows fundamental queries in data stream summarization such as point, range, and inner product queries to be approximately answered very quickly; in addition, it can be applied to solve several important problems in data streams such as finding quantiles, frequent items, etc. The time and space bounds we show for using the CM sketch to solve these problems significantly improve those previously known — typically from 1/ε 2 to 1/ε in factor. 1
Finding frequent items in data streams
, 2002
"... Abstract. We present a 1pass algorithm for estimating the most frequent items in a data stream using very limited storage space. Our method relies on a novel data structure called a count sketch, which allows us to estimate the frequencies of all the items in the stream. Our algorithm achieves bett ..."
Abstract

Cited by 259 (0 self)
 Add to MetaCart
Abstract. We present a 1pass algorithm for estimating the most frequent items in a data stream using very limited storage space. Our method relies on a novel data structure called a count sketch, which allows us to estimate the frequencies of all the items in the stream. Our algorithm achieves better space bounds than the previous best known algorithms for this problem for many natural distributions on the item frequencies. In addition, our algorithm leads directly to a 2pass algorithm for the problem of estimating the items with the largest (absolute) change in frequency between two data streams. To our knowledge, this problem has not been previously studied in the literature. 1
Similarity estimation techniques from rounding algorithms
 In Proc. of 34th STOC
, 2002
"... A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads ..."
Abstract

Cited by 230 (6 self)
 Add to MetaCart
A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads to a compact representation of objects so that similarity of objects can be estimated from their compact sketches, and also leads to efficient algorithms for approximate nearest neighbor search and clustering. Minwise independent permutations provide an elegant construction of such a locality sensitive hashing scheme for a collection of subsets with the set similarity measure sim(A, B) = A∩B A∪B . We show that rounding algorithms for LPs and SDPs used in the context of approximation algorithms can be viewed as locality sensitive hashing schemes for several interesting collections of objects. Based on this insight, we construct new locality sensitive hashing schemes for: 1. A collection of vectors with the distance between ⃗u and ⃗v measured by θ(⃗u,⃗v)/π, where θ(⃗u,⃗v) is the angle between ⃗u and ⃗v. This yields a sketching scheme for estimating the cosine similarity measure between two vectors, as well as a simple alternative to minwise independent permutations for estimating set similarity. 2. A collection of distributions on n points in a metric space, with distance between distributions measured by the Earth Mover Distance (EMD), (a popular distance measure in graphics and vision). Our hash functions map distributions to points in the metric space such that, for distributions P and Q,
What’s hot and what’s not: Tracking most frequent items dynamically
 In Proceedings of ACM Principles of Database Systems
, 2003
"... Most database management systems maintain statistics on the underlying relation. One of the important statistics is that of the “hot items ” in the relation: those that appear many times (most frequently, or more than some threshold). For example, endbiased histograms keep the hot items as part of ..."
Abstract

Cited by 174 (14 self)
 Add to MetaCart
Most database management systems maintain statistics on the underlying relation. One of the important statistics is that of the “hot items ” in the relation: those that appear many times (most frequently, or more than some threshold). For example, endbiased histograms keep the hot items as part of the histogram and are used in selectivity estimation. Hot items are used as simple outliers in data mining, and in anomaly detection in many applications. We present new methods for dynamically determining the hot items at any time in a relation which is undergoing deletion operations as well as inserts. Our methods maintain small space data structures that monitor the transactions on the relation, and when required, quickly output all hot items, without rescanning the relation in the database. With userspecified probability, all hot items are correctly reported. Our methods rely on ideas from “group testing”. They are simple to implement, and have provable quality, space and time guarantees. Previously known algorithms for this problem that make similar quality and performance guarantees can not handle deletions, and those that handle deletions can not make similar guarantees without rescanning the database. Our experiments with real and synthetic data show that our algorithms are accurate in dynamically tracking the hot items independent of the rate of insertions and deletions.
An Information Statistics Approach to Data Stream and Communication Complexity
, 2003
"... We present a new method for proving strong lower bounds in communication complexity. ..."
Abstract

Cited by 153 (8 self)
 Add to MetaCart
We present a new method for proving strong lower bounds in communication complexity.
Clustering data streams: Theory and practice
 IEEE TKDE
, 2003
"... Abstract—The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and clickstreams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little ..."
Abstract

Cited by 106 (2 self)
 Add to MetaCart
Abstract—The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and clickstreams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little memory, is crucial. We describe such a streaming algorithm that effectively clusters large data streams. We also provide empirical evidence of the algorithm’s performance on synthetic and real data streams. Index Terms—Clustering, data streams, approximation algorithms. 1
How to Summarize the Universe: Dynamic Maintenance of Quantiles
 In VLDB
, 2002
"... Order statistics, i.e., quantiles, are frequently used in databases both at the database server as well as the application level. For example, they are useful in selectivity estimation during query optimization, in partitioning large relations, in estimating query result sizes when building us ..."
Abstract

Cited by 104 (13 self)
 Add to MetaCart
Order statistics, i.e., quantiles, are frequently used in databases both at the database server as well as the application level. For example, they are useful in selectivity estimation during query optimization, in partitioning large relations, in estimating query result sizes when building user interfaces, and in characterizing the data distribution of evolving datasets in the process of data mining.
Nearoptimal sparse Fourier representations via sampling
 In STOC
, 2002
"... We give an algorithm for nding a Fourier representation R ofBterms for a given discrete signal A of lengthN, such thatkA,Rk 2 2 is within the factor (1 +) of best possible kA,Roptk 2 2. Our algorithm can access A by reading its values on a sample setT [0;N), chosen randomly from a (nonproduct) dist ..."
Abstract

Cited by 80 (22 self)
 Add to MetaCart
We give an algorithm for nding a Fourier representation R ofBterms for a given discrete signal A of lengthN, such thatkA,Rk 2 2 is within the factor (1 +) of best possible kA,Roptk 2 2. Our algorithm can access A by reading its values on a sample setT [0;N), chosen randomly from a (nonproduct) distribution of our choice, independent of A. That is, we sample nonadaptively. The total time cost of the algorithm is polynomial inB log(N) log(M) = (where M is the ratio of largest to smallest numerical quantity encountered), which implies a similar bound for the number of samples. 1.