Results 1 
4 of
4
Homotopy Coherent Category Theory
, 1996
"... this paper we try to lay some of the foundations of such a theory of categories `up to homotopy' or more exactly `up to coherent homotopies'. The method we use is based on earlier work on: ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
this paper we try to lay some of the foundations of such a theory of categories `up to homotopy' or more exactly `up to coherent homotopies'. The method we use is based on earlier work on:
Flexible sheaves
, 1996
"... This is an unfinished explanation of the notion of “flexible sheaf”, that is a homotopical notion of sheaf of topological spaces (homotopy types) over a site. See “Homotopy over the complex numbers and generalized de Rham cohomology ” (submitted to proceedings of the Taniguchi conference on vector b ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
This is an unfinished explanation of the notion of “flexible sheaf”, that is a homotopical notion of sheaf of topological spaces (homotopy types) over a site. See “Homotopy over the complex numbers and generalized de Rham cohomology ” (submitted to proceedings of the Taniguchi conference on vector bundles, preprint of Toulouse 3, and also available at my homepage 2) for a more detailed introduction, and also for a further development of the ideas presented here. The present paper was finished in December 1993 while I was visiting MIT. Since writing this, I have realized that the theory sketched here is essentially equivalent to JardineIllusie’s theory of presheaves of topological spaces (although they talk about presheaves of simplicial sets which is the same thing). This is the point of view adopted in “Homotopy over the complex numbers and generalized de Rham cohomology”. 1 Added in August 1996: I am finally sending this to “Duke eprints ” because it now seems that there may be several useful features of the treatment given here. First of all, the direct construction of the homotopysheafification (by doing a certain operation n+2 times) seems to be useful, for example I need