Results 1  10
of
48
A model category structure on the category of simplicial categories
, 2005
"... In this paper we put a cofibrantly generated model category structure on the category of small simplicial categories. The weak equivalences are a simplicial analogue of the notion of equivalence of categories. ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
In this paper we put a cofibrantly generated model category structure on the category of small simplicial categories. The weak equivalences are a simplicial analogue of the notion of equivalence of categories.
Three models for the homotopy theory of homotopy theories
, 2005
"... its simplicial localization yields a “homotopy theory of homotopy theories. ” In this paper we show that there are two different categories of diagrams of simplicial sets, each equipped with an appropriate definition of weak equivalence, such that the resulting homotopy theories are each equivalent ..."
Abstract

Cited by 43 (8 self)
 Add to MetaCart
its simplicial localization yields a “homotopy theory of homotopy theories. ” In this paper we show that there are two different categories of diagrams of simplicial sets, each equipped with an appropriate definition of weak equivalence, such that the resulting homotopy theories are each equivalent to the homotopy theory arising from the model category structure on simplicial categories. Thus, any of these three categories with their respective weak equivalences could be considered a model for the homotopy theory of homotopy theories. One of them in particular, Rezk’s complete Segal space model category structure on the category of simplicial spaces, is much more convenient from the perspective of making calculations and therefore obtaining information about a given homotopy theory. 1.
Universal homotopy theories
 Adv. Math
"... Abstract. Begin with a small category C. The goal of this short note is to point out that there is such a thing as a ‘universal model category built from C’. We describe applications of this to the study of homotopy colimits, the DwyerKan theory of framings, to sheaf theory, and to the homotopy the ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
Abstract. Begin with a small category C. The goal of this short note is to point out that there is such a thing as a ‘universal model category built from C’. We describe applications of this to the study of homotopy colimits, the DwyerKan theory of framings, to sheaf theory, and to the homotopy theory of schemes. Contents
Ktheory and derived equivalences
 Duke Math. J
"... Abstract. We show that if two rings have equivalent derived categories then they have the same algebraic Ktheory. Similar results are given for Gtheory, and for a large class of abelian categories. Contents ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Abstract. We show that if two rings have equivalent derived categories then they have the same algebraic Ktheory. Similar results are given for Gtheory, and for a large class of abelian categories. Contents
Equivalences of monoidal model categories
 Algebr. Geom. Topol
, 2002
"... Abstract: We construct Quillen equivalences between the model categories of monoids (rings), modules and algebras over two Quillen equivalent model categories under certain conditions. This is a continuation of our earlier work where we established model categories of monoids, modules and algebras [ ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
Abstract: We construct Quillen equivalences between the model categories of monoids (rings), modules and algebras over two Quillen equivalent model categories under certain conditions. This is a continuation of our earlier work where we established model categories of monoids, modules and algebras [SS00]. As an application we extend the DoldKan equivalence to show that the model categories of simplicial rings, modules and algebras are Quillen equivalent to the associated model categories of connected differential graded rings, modules and algebras. We also show that our classification results from [SS] concerning stable model categories translate to any one of the known symmetric monoidal model categories of spectra. 1.
Higher and derived stacks: a global overview
, 2005
"... These are expended notes of my talk at the summer institute in algebraic geometry (Seattle, JulyAugust 2005), whose main purpose is to present a global overview on the theory of higher and derived stacks. This text is far from being exhaustive but is intended to cover a rather large part of the sub ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
These are expended notes of my talk at the summer institute in algebraic geometry (Seattle, JulyAugust 2005), whose main purpose is to present a global overview on the theory of higher and derived stacks. This text is far from being exhaustive but is intended to cover a rather large part of the subject, starting from the motivations and the foundational material, passing through some examples and basic notions, and ending with some more recent developments and open questions.
Simplicial Structures on Model Categories and Functors
 Amer.J.Math.123
, 2001
"... We produce a highly structured way of associating a simplicial category to a model category which improves on work of Dwyer and Kan and answers a question of Hovey. We show that model categories satisfying a certain axiom are Quillen equivalent to simplicial model categories. A simplicial model cate ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
We produce a highly structured way of associating a simplicial category to a model category which improves on work of Dwyer and Kan and answers a question of Hovey. We show that model categories satisfying a certain axiom are Quillen equivalent to simplicial model categories. A simplicial model category provides higher order structure such as composable mapping spaces and homotopy colimits. We also show that certain homotopy invariant functors can be replaced by weakly equivalent simplicial, or "continuous," functors. This is used to show that if a simplicial model category structure exists on a model category then it is unique up to simplicial Quillen equivalence.
Homotopy types of strict 3groupoids
, 1988
"... It has been difficult to see precisely the role played by strict ncategories in the nascent theory of ncategories, particularly as related to ntruncated homotopy types of spaces. We propose to show in a fairly general setting that one cannot obtain all 3types by any reasonable realization functo ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
It has been difficult to see precisely the role played by strict ncategories in the nascent theory of ncategories, particularly as related to ntruncated homotopy types of spaces. We propose to show in a fairly general setting that one cannot obtain all 3types by any reasonable realization functor 1 from strict 3groupoids (i.e. groupoids in the sense of [20]). More precisely we show that one does not obtain the 3type of S 2. The basic reason is that the Whitehead bracket is nonzero. This phenomenon is actually wellknown, but in order to take into account the possibility of an arbitrary reasonable realization functor we have to write the argument in a particular way. We start by recalling the notion of strict ncategory. Then we look at the notion of strict ngroupoid as defined by Kapranov and Voevodsky [20]. We show that their definition is equivalent to a couple of other naturallooking definitions (one of these equivalences was left as an exercise in [20]). At the end of these first sections, we have a picture of strict 3groupoids having only one object and one 1morphism, as being equivalent to abelian monoidal objects (G, +) in the category of groupoids, such that (π0(G), +) is a group. In the case in question, this group will be π2(S 2) = Z. Then comes the main
A uniqueness theorem for stable homotopy theory
 Math. Z
, 2002
"... Roughly speaking, the stable homotopy category of algebraic topology is obtained from the ..."
Abstract

Cited by 13 (9 self)
 Add to MetaCart
Roughly speaking, the stable homotopy category of algebraic topology is obtained from the
Quasicategories vs Segal spaces
 IN CATEGORIES IN ALGEBRA, GEOMETRY AND MATHEMATICAL
, 2006
"... We show that complete Segal spaces and Segal categories are Quillen equivalent to quasicategories. ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
We show that complete Segal spaces and Segal categories are Quillen equivalent to quasicategories.