Results 1  10
of
171
Making data structures persistent
, 1989
"... This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any t ..."
Abstract

Cited by 256 (5 self)
 Add to MetaCart
This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and efftcient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O (1) space bounds for insertion and deletion.
Spanning Trees and Spanners
, 1996
"... We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" ..."
Abstract

Cited by 143 (2 self)
 Add to MetaCart
We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. For instance, one may wish to connect components of a VLSI circuit by networks of wires, in a way that uses little surface area on the chip, draws little power, and propagates signals quickly. Similar problems come up in other applications such as telecommunications, road network design, and medical imaging [1]. One network design problem, the Traveling Salesman problem, is sufficiently important to have whole books devoted to it [79]. Problems involving some form of geometric minimum or maximum spanning tree also arise in the solution of other geometric problems such as clustering [12], mesh generation [56], and robot motion planning [93]. One can vary the network design problem in many w...
Efficient algorithms for geometric optimization
 ACM Comput. Surv
, 1998
"... We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear progra ..."
Abstract

Cited by 100 (12 self)
 Add to MetaCart
We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear programming and related problems, and LPtype problems and their efficient solution. We then describe a variety of applications of these and other techniques to numerous problems in geometric optimization, including facility location, proximity problems, statistical estimators and metrology, placement and intersection of polygons and polyhedra, and ray shooting and other querytype problems.
External Memory Data Structures
, 2001
"... In many massive dataset applications the data must be stored in space and query efficient data structures on external storage devices. Often the data needs to be changed dynamically. In this chapter we discuss recent advances in the development of provably worstcase efficient external memory dynami ..."
Abstract

Cited by 83 (37 self)
 Add to MetaCart
In many massive dataset applications the data must be stored in space and query efficient data structures on external storage devices. Often the data needs to be changed dynamically. In this chapter we discuss recent advances in the development of provably worstcase efficient external memory dynamic data structures. We also briefly discuss some of the most popular external data structures used in practice.
Persistent Authenticated Dictionaries and Their Applications
 In Proc. Information Security Conference (ISC 2001), volume 2200 of LNCS
, 2001
"... We introduce the notion of persistent authenticated dictionaries, that is, dictionaries where the user can make queries of the type "was element e in set S at time t?" and get authenticated answers. Applications include credential and certificate validation checking in the past (as in digi ..."
Abstract

Cited by 57 (17 self)
 Add to MetaCart
We introduce the notion of persistent authenticated dictionaries, that is, dictionaries where the user can make queries of the type "was element e in set S at time t?" and get authenticated answers. Applications include credential and certificate validation checking in the past (as in digital signatures for electronic contracts), digital receipts, and electronic tickets. We present two data structures that can efficiently support an infrastructure for persistent authenticated dictionaries, and we compare their performance.
Dynamic Trees and Dynamic Point Location
 In Proc. 23rd Annu. ACM Sympos. Theory Comput
, 1991
"... This paper describes new methods for maintaining a pointlocation data structure for a dynamicallychanging monotone subdivision S. The main approach is based on the maintenance of two interlaced spanning trees, one for S and one for the graphtheoretic planar dual of S. Queries are answered by using ..."
Abstract

Cited by 44 (9 self)
 Add to MetaCart
This paper describes new methods for maintaining a pointlocation data structure for a dynamicallychanging monotone subdivision S. The main approach is based on the maintenance of two interlaced spanning trees, one for S and one for the graphtheoretic planar dual of S. Queries are answered by using a centroid decomposition of the dual tree to drive searches in the primal tree. These trees are maintained via the linkcut trees structure of Sleator and Tarjan, leading to a scheme that achieves vertex insertion/deletion in O(log n) time, insertion/deletion of kedge monotone chains in O(log n + k) time, and answers queries in O(log 2 n) time, with O(n) space, where n is the current size of subdivision S. The techniques described also allow for the dual operations expand and contract to be implemented in O(log n) time, leading to an improved method for spatial pointlocation in a 3dimensional convex subdivision. In addition, the interlacedtree approach is applied to online pointlo...
Primal Dividing and Dual Pruning: OutputSensitive Construction of 4d Polytopes and 3d Voronoi Diagrams
, 1997
"... In this paper, we give an algorithm for outputsensitive construction of an fface convex hull of a set of n points in general position in E 4 . Our algorithm runs in O((n + f)log 2 f) time and uses O(n + f) space. This is the first algorithm within a polylogarithmic factor of optimal O(n log f ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
In this paper, we give an algorithm for outputsensitive construction of an fface convex hull of a set of n points in general position in E 4 . Our algorithm runs in O((n + f)log 2 f) time and uses O(n + f) space. This is the first algorithm within a polylogarithmic factor of optimal O(n log f + f) time over the whole range of f . By a standard lifting map, we obtain outputsensitive algorithms for the Voronoi diagram or Delaunay triangulation in E 3 and for the portion of a Voronoi diagram that is clipped to a convex polytope. Our approach simplifies the "ultimate convex hull algorithm" of Kirkpatrick and Seidel in E 2 and also leads to improved outputsensitive results on constructing convex hulls in E d for any even constant d ? 4. 1 Introduction Geometric structures induced by n points in Euclidean ddimensional space, such as the convex hull, Voronoi diagram, or Delaunay triangulation, can be of larger size than the point set that defines them. In many practical situat...
Robust proximity queries: an illustration of degreedriven algorithm design
 IN: PROC. 13TH ANNU. ACM SYMPOS. COMPUT. GEOM
, 1997
"... In the context of methodologies intended to confer robustness to geometric algorithms, we elaborate on the exact computation paradigm and formalize the notion of degree of a geometric algorithm, aa a worstcase quantification of the precision (number of bits) to which arithmetic calculation have to ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
In the context of methodologies intended to confer robustness to geometric algorithms, we elaborate on the exact computation paradigm and formalize the notion of degree of a geometric algorithm, aa a worstcase quantification of the precision (number of bits) to which arithmetic calculation have to be executed in order to guarantee topological correctness. We aleo propose a formalism for the expeditious evaluation of algorithmic degree. As an application of this paradigm and an illustration of our general approach, we consider the important classical problem of proximity queries in 2 and 3 dimensions, and develop a new technique for the efficient and robust execution of such queries baaed on an implicit representation of Voronoi diagrams. Our new technique gives both low degree and fast query time, and for 2D queries is optimal with respect to both cost meixmres of the paradigm, asymptotic number of operations md arithmetic degree.
A singly exponential stratification scheme for real semialgebraic varieties and its applications
, 1991
"... ..."
I/OEfficient Dynamic Planar Point Location
"... We present the first provably I/Oefficient dynamic data structure for point location in a general planar subdivision. Our structure uses O(N/B) disk blocks to store a subdivision of size N , where B is the disk block size. Queries can be answered in ... I/Os in the worstcase, and insertions and de ..."
Abstract

Cited by 29 (16 self)
 Add to MetaCart
We present the first provably I/Oefficient dynamic data structure for point location in a general planar subdivision. Our structure uses O(N/B) disk blocks to store a subdivision of size N , where B is the disk block size. Queries can be answered in ... I/Os in the worstcase, and insertions and deletions can be performed in ... and ... I/Os amortized, respectively. Previously, an I/Oefficient dynamic point location structure was only known for monotone subdivisions. Part of our data structure...