Results 1  10
of
55
A PolynomialTime Approximation Algorithm for the Permanent of a Matrix with NonNegative Entries
 Journal of the ACM
, 2004
"... Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily ..."
Abstract

Cited by 324 (25 self)
 Add to MetaCart
Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small specified relative error of the true value of the permanent. Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical
Geometric bounds for eigenvalues of Markov chains
, 1991
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 281 (13 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Approximating probabilistic inference in Bayesian belief networks is NPhard
, 1991
"... Abstract A belief network comprises a graphical representation of dependencies between variables of a domain and a set of conditional probabilities associated with each dependency. Unless P=NP, an efficient, exact algorithm does not exist to compute probabilistic inference in belief networks. Stoch ..."
Abstract

Cited by 256 (3 self)
 Add to MetaCart
Abstract A belief network comprises a graphical representation of dependencies between variables of a domain and a set of conditional probabilities associated with each dependency. Unless P=NP, an efficient, exact algorithm does not exist to compute probabilistic inference in belief networks. Stochastic simulation methods, which often improve run times, provide an alternative to exact inference algorithms. We present such a stochastic simulation algorithm 2)BNRAS that is a randomized approximation scheme. To analyze the run time, we parameterize belief networks by the dependence value PE, which is a measure of the cumulative strengths of the belief network dependencies given background evidence E. This parameterization defines the class of fdependence networks. The run time of 2)BNRAS is polynomial when f is a polynomial function. Thus, the results of this paper prove the existence of a class of belief networks for which inference approximation is polynomial and, hence, provably faster than any exact algorithm. I.
Improved bounds for mixing rates of Markov chains and multicommodity flow
 Combinatorics, Probability and Computing
, 1992
"... The paper is concerned with tools for the quantitative analysis of finite Markov chains whose states are combinatorial structures. Chains of this kind have algorithmic applications in many areas, including random sampling, approximate counting, statistical physics and combinatorial optimisation. The ..."
Abstract

Cited by 186 (8 self)
 Add to MetaCart
The paper is concerned with tools for the quantitative analysis of finite Markov chains whose states are combinatorial structures. Chains of this kind have algorithmic applications in many areas, including random sampling, approximate counting, statistical physics and combinatorial optimisation. The efficiency of the resulting algorithms depends crucially on the mixing rate of the chain, i.e., the time taken for it to reach its stationary or equilibrium distribution. The paper presents a new upper bound on the mixing rate, based on the solution to a multicommodity flow problem in the Markov chain viewed as a graph. The bound gives sharper estimates for the mixing rate of several important complex Markov chains. As a result, improved bounds are obtained for the runtimes of randomised approximation algorithms for various problems, including computing the permanent of a 01 matrix, counting matchings in graphs, and computing the partition function of a ferromagnetic Ising system. Moreove...
Matching is as Easy as Matrix Inversion
, 1987
"... A new algorithm for finding a maximum matching in a general graph is presented; its special feature being that the only computationally nontrivial step required in its execution is the inversion of a single integer matrix. Since this step can be parallelized, we get a simple parallel (RNC2) algorit ..."
Abstract

Cited by 166 (5 self)
 Add to MetaCart
A new algorithm for finding a maximum matching in a general graph is presented; its special feature being that the only computationally nontrivial step required in its execution is the inversion of a single integer matrix. Since this step can be parallelized, we get a simple parallel (RNC2) algorithm. At the heart of our algorithm lies a probabilistic lemma, the isolating lemma. We show applications of this lemma to parallel computation and randomized reductions.
Quick Approximation to Matrices and Applications
"... We give algorithms to find the following simply described approximation to a given matrix. Given an m \Theta n matrix A with entries between say1 and 1, and an error parameter ffl between 0 and 1, we find a matrix D (implicitly) which is the sum of O(1=ffl 2 ) simple rank 1 matrices so that the ..."
Abstract

Cited by 114 (3 self)
 Add to MetaCart
We give algorithms to find the following simply described approximation to a given matrix. Given an m \Theta n matrix A with entries between say1 and 1, and an error parameter ffl between 0 and 1, we find a matrix D (implicitly) which is the sum of O(1=ffl 2 ) simple rank 1 matrices so that the sum of entries of any submatrix (among the 2 m+n ) of (A \Gamma D) is at most fflmn in absolute value. Our algorithm takes time dependent only on ffl and the allowed probability of failure (not on m;n). We draw on two lines of research to develop the algorithms: one is built around the fundamental Regularity Lemma of Szemer'edi in Graph Theory and the constructive version of Alon, Duke, Leffman, Rodl and Yuster. The second one is from the papers of Arora, Karger and Karpinski, Fernandez de la Vega and most directly Goldwasser, Goldreich and Ron who develop approximation algorithms for a set of graph problems, typical of which is the maximum cut problem. ?From our matrix approximation, the...
Secure multiparty computation of approximations
, 2001
"... Approximation algorithms can sometimes provide efficient solutions when no efficient exact computation is known. In particular, approximations are often useful in a distributed setting where the inputs are held by different parties and may be extremely large. Furthermore, for some applications, the ..."
Abstract

Cited by 98 (24 self)
 Add to MetaCart
Approximation algorithms can sometimes provide efficient solutions when no efficient exact computation is known. In particular, approximations are often useful in a distributed setting where the inputs are held by different parties and may be extremely large. Furthermore, for some applications, the parties want to compute a function of their inputs securely, without revealing more information than necessary. In this work we study the question of simultaneously addressing the above efficiency and security concerns via what we call secure approximations. We start by extending standard definitions of secure (exact) computation to the setting of secure approximations. Our definitions guarantee that no additional information is revealed by the approximation beyond what follows from the output of the function being approximated. We then study the complexity of specific secure approximation problems. In particular, we obtain a sublinearcommunication protocol for securely approximating the Hamming distance and a polynomialtime protocol for securely approximating the permanent and related #Phard problems. 1
Some Applications of Laplace Eigenvalues of Graphs
 GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, VOLUME 497 OF NATO ASI SERIES C
, 1997
"... In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of ..."
Abstract

Cited by 93 (0 self)
 Add to MetaCart
In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of graphs, the maxcut problem and its relation to semidefinite programming, rapid mixing of Markov chains, and to extensions of the results to infinite graphs.
A Chernoff Bound For Random Walks On Expander Graphs
 SIAM J. Comput
, 1998
"... . We consider a finite random walk on a weighted graph G; we show that the fraction of time spent in a set of vertices A converges to the stationary probability #(A) with error probability exp ..."
Abstract

Cited by 80 (0 self)
 Add to MetaCart
.<F3.827e+05> We consider a finite random walk on a weighted graph<F3.539e+05><F3.827e+05> G; we show that the fraction of time spent in a set of vertices<F3.539e+05> A<F3.827e+05> converges to the stationary probability<F3.539e+05><F3.827e+05><F3.539e+05><F3.827e+05> #(A) with error probability exponentially small in the length of the random walk and the square of the size of the deviation from<F3.539e+05><F3.827e+05><F3.539e+05><F3.827e+05> #(A). The exponential bound is in terms of the expansion of<F3.539e+05> G<F3.827e+05> and improves previous results of [D. Aldous,<F3.405e+05> Probab. Engrg. Inform.<F3.827e+05> Sci., 1 (1987), pp. 3346], [L. Lovasz and M. Simonovits,<F3.405e+05> Random Structures<F3.827e+05> Algorithms, 4 (1993), pp. 359412], [M. Ajtai, J. Komlos, and E. Szemeredi,<F3.405e+05> Deterministic simulation of<F3.827e+05> logspace, in Proc. 19th ACM Symp. on Theory of Computing, 1987]. We show that taking the sample average from one trajectory gives a more e#cien...